Cho tam giác ABC vuông tại A có BC=2AB.Tia p/g góc B cắt cạnh AC tại D. Gội E là trug điểm của BC.Gọi F là giao điểm của tia ED và tia BA. C/m rằng:
a) C/m tam giác ABD = tam giác EBD
b)DF=DC
cho tam giác ABC vuông tại A có BC=2AB.tia phân giacd của góc B cắt cạnh AC tại D.gọi E là trung điểm của BC.gọi F là giao điểm của tia ED và tia BA.C/m rằng
a) tam giác ABD= tam giác EBD
b)DF=DC
c)số đo các góc ABC,ACB,FDC tương ứng tỉ lệ với 2,1,4
Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại D, kẻ DE vuông góc với BC(E thuộc BC) , gọi F là giao điểm của BA và tia ED.
A) tam giác ABD= tam giác EBD
B)tam giác DFC cân
C) Gọi H là giao điểm của BD và CF. Trên tia đối của tia DF lấy điểm K sao cho DK=DF.Vẽ điểm I nằm trên đoạn thẳng CD sao cho CI=2DI.Chứng minh DH vuông góc với CF và ba điểm K,I,H thẳng hàng
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>DA=DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
=>ΔDAF=ΔDEC
=>DF=DC
=>ΔDFC cân tại D
c: Xét ΔBFC có
FE,CAlà đường cao
FE cắt CA tại D
=>D là trực tâm
=>BD vuông góc CF tại H
=>DH vuông góc CF tại H
mà ΔDFC cân tại D
nên H là trung điểm của FC
Xét ΔKFC có
CD là trung tuyến
CI=2/3CD
Do đó: I là trọng tâm
mà H là trung điểm của CF
nên K,I,H thẳng hàng
Tam giác ABC vuông tại A, tia phân giác của góc B cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE= BA
a, cmr: tam giác ABD= tam giác EBD
b, cmr: DE vuông góc BC
c, gọi F là giao điểm của BA và ED. cmr DF= DC
a) Xét tam giác ABD và EBD CÓ
BD chung, góc abd= góc ebd, BE=BA
do dố tam giác abd= tam giác ebd (c-g-c)
b) vì tam giác ABD= tam giác EBD do đó
góc A= góc E (2 góc tương ứng)
mà góc A=90 nên góc E=90
=>DE vuông góc BC
c) Xét tam giác ADF và tam giác EDC có
AD=DE (TAM GIÁC ABD= EBD), GÓC A=GÓC E=90, HAI GÓC D BẰNG NHAU VÌ ĐỐI ĐỈNH
DO ĐÓ TAM GIÁC ADF= TAM GIÁC EDC
=>DF=DC (2 CẠNH TƯƠNG ỨNG )
MÌNH ĐÁNH CAPSLOCK THÔNG CẢM
Cho tam giác ABC vuông tại A (AB < AC), tia phân giác của góc B cắt cạnh AC tại D. Vẽ DC vuông góc với BC tại E
a) Chứng minh tam giác ABD = EBD
b) Cho AB=6 cm; AC=8 c. Tính BC và EC
c) I là giao điểm của ED và BA. Chứng minh tam giác BIC cân
d) So sánh AD và DC
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó:ΔABD=ΔEBD
b: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
c: Xét ΔADI vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADI}=\widehat{EDC}\)
Do đó:ΔADI=ΔEDC
Suy ra: AI=EC
Ta có: BA+AI=BI
BE+EC=BC
mà BA=BE
và AI=EC
nên BI=BC
hayΔBIC cân tại B
d: Ta có: AD=DE
mà DE<DC
nên AD<DC
Cho tam giác ABC vuông tại A, BD là tia phân giác của góc B (D thuộc AC). Kẻ DE vuông góc với BC(E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh:
a. Tam giác ABD = tam giác EBD
b. chứng minh DF = DC
c. chứng minh DA<DC
d. gọi H là giao điểm của BD và CF K là giao điểmtrên tia đối của DFsao cho DK=DF I là điểm trên đoạn thẳng CD sao cho CI=2DI chứng minh rằng ba điểm K,I,H trên thẳng hàng
cho tam giác ABC vuông tại A ,tia phân giác của góc B cắt AC tại D . Từ D kẻ DE vuông BC , tia BA và tia ED cắt nhau tại F ,gọi M là trung điểm của CF . Chứng minh rằng :
a ) Tam giác abd = tam giác EBD
b) AF=EC
c) Ba điểm B,D,M thẳng hàng
cho tam giác abc vuông tại a tia phân giác của góc b cắt cạnh ac tại điểm d trên cạnh lấy điểm e sao cho ba=be a, chứng minh:tam giác abd=ebd và bed=90 độ b,goi f là giao điểm của tia ba và tia ed chứng minh: df=dc
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
=>\(\widehat{BED}=\widehat{BAD}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
b: ΔBAD=ΔBED
=>DA=DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔDAF=ΔDEC
=>DF=DC
cho tam giác abc vuông tại a (ab<ac) vẽ tia phân giác của góc B cắt AC tại D.Kẻ DE vuông góc với BC tại E
a)c/m tam giác ABD=tam giác EBD
b) 2 tia BA và ED cắt nhau tại M.c/m tam giác DMC là tam giác cân
c)c/m góc BMC=góc BCM
d)lấy điểm I thuộc AB.c/m CI^2-BC^2=ID^2-BD^2
làm hết nha
a) xét tam giác ABD và tam giác EBD vuông tại A, E ( gt, DE⊥BC)
BD chung
góc ABD = góc EBD ( BD là tia p/g của góc B)
do đó : tam giác ABD = tam giác EBD ( cạnh huyền + góc nhọn )
b) Ta có: ΔABD=ΔEBD(cmt)
nên DA=DE(Hai cạnh tương ứng)
Xét ΔADM vuông tại A và ΔEDC vuông tại E có
DA=DE(cmt)
\(\widehat{ADM}=\widehat{EDC}\)(Hai góc đối đỉnh)
Do đó: ΔADM=ΔEDC(cạnh góc vuông-góc nhọn kề)
Suy ra: DM=DC(Hai cạnh tương ứng)
Xét ΔDMC có DM=DC(cmt)
nên ΔDMC cân tại D(Định nghĩa tam giác cân)
Tam giác ABC vuông tại A, tia phân giác của góc B cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE= BA
a, cmr: tam giác ABD= tam giác EBD
b, cmr: DE vuông góc BC
c, gọi F là giao điểm của BA và ED. cmr DE= DC
a, Vì BD là tia phân giác của góc B suy ra:
góc ABD=góc EBD
Xét tam giác ABD và tam giác EBD có:
BA=BD(gt)
góc ABD=góc EBD(cmt)
BD chung
suy ra: tam giác ABD= tam giác EBD(cgc)
Vậy tam giác ABD= tam giác EBD
b,Vì tam giác ABD=tam giác EBD nên
góc BAD=góc BED(2 góc tương ứng)
mà góc BAD=90độ(tam giác ABC vuông tại A)
suy ra góc BED=90 độ
suy ra:DE vuông góc với BC
Câu c hình như đề bài sai