Tim x,y,z biet (x +1)^2016 + (2y - 1)^2016 + |x + 2y - z |^2017
Tìm x , y, z :
\(\left(x-1\right)^{2016}+\left(2y-1\right)^{2016}+|x+2y-z|^{2017}=0\)
Ta có
(x -1)^2016 >0; (2y-1)^2016>0; /x+2y-z/^2017>0
Mà tổng ba số trên bằng 0
=>(x-1)^2016=0 ; (2y-1)^2016=0; /x+2y-z/=0
=>x=1; y=1/2; z= 2
Tìm các số x , y, z biết:
\(\left(x-1\right)^{2016}+\left(2y-1\right)^{2016}+|x+2y-z|^{2017}=0\)
\(\left\{{}\begin{matrix}\left(x-1\right)^{2016}\ge0\\\left(2y-1\right)^{2016}\ge0\\\left|x+2y-z\right|^{2017}\ge0\end{matrix}\right.\Rightarrow\left(x-1\right)^{2016}+\left(2y-1\right)^{2016}+\left|x+2y-z\right|^{2017}\ge0\)
Mà \(\left(x-1\right)^{2017}+\left(2y-1\right)^{2016}+\left|x+2y-z\right|^{2017}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^{2016}=0\\\left(2y-1\right)^{2016}=0\\\left|x+2y-z\right|^{2017}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\\z=2\end{matrix}\right.\)
\(\left(x-1\right)^{2016}+\left(2y-1\right)^{2016}+\left|x+2y-z\right|^{2017}=0\)
\(\left\{{}\begin{matrix}\left(x-1\right)^{2016}\ge0\\\left(2y-1\right)^{2016}\ge0\\\left|x+2y-z\right|^{2017}\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)^{2016}+\left(2y-1\right)^{2016}+\left|x+2y-z\right|^{2017}\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(x-1\right)^{2016}=0\\\left(2y-1\right)^{2016}=0\\\left|x+2y-z\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\\z=\dfrac{3}{2}\end{matrix}\right.\)
Vậy...
tính xyz
(x-1)^2006 + (2y-1)^2016+/x+2y-z/^2017=0
Ta có :
\(\left(x-1\right)^{2006}\ge0\)
\(\left(2y-1\right)^{2016}\ge0\)
\(\left(x+2y-z\right)^{2017}\ge0\)
Mà \(\left(x-1\right)^{2016}+\left(2y-1\right)^{2016}\)\(+|x+2y-z|^{2017}\)
\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^{2006}=0\\\left(2x-1\right)^{2016}=0\\|x+2y-z|^{2017}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\2y-1=0\\x+2y-z=0\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=1\\2y=1\\1-1-z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2}\\z=2\end{cases}}}\)
Vậy ...
Ta có :
\(\left(x-1\right)^{2006}\ge0\)
\(\left(2y-1\right)^{2016}\ge0\)
\(\left|x+2y-z\right|^{2017}\ge0\)
Mà \(\left(x-1\right)^{2006}+\left(2x-1\right)^{2016}+\left|x+2y-z\right|^{2017}=0\)
Suy ra : \(\hept{\begin{cases}\left(x-1\right)^{2006}=0\\\left(2x-1\right)^{2016}=0\\\left|x+2y-z\right|^{2017}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\2y-1=0\\x+2y-z=0\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\2y=1\\1+1-z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2}\\z=2\end{cases}}}\)
Vậy \(x=1\)\(;\)\(y=\frac{1}{2}\) và \(z=2\)
Chúc bạn học tốt ~
Tìm x,y,z biết: \(\left(x-1\right)^{2016}\)+\(\left(2y-1\right)^{2016}\)\(|^{ }x+2y-z|^{2017}_{ }_{ }\)=0
Nhanh lên chìu nay mk phải đi hk rùi nhớ giải chi tiết nha
Cho mk hỏi trước dấu trị tuyện đối là dấu j z ?
ko có dấu j cả. Thôi ko cần giải đâu thầy mk giải rùi
Tinh tong : S= x+2y +3z, biet rang : \(\frac{1}{x+2y}+\frac{1}{2y+3z}+\frac{1}{3z+z}=\frac{12x}{2y+3z}+\frac{24y}{3z+x}-\frac{36z}{x+2y}=2016\)
Tim x,yz thuộc Z biết: 3z-2y/2015=2x-5z/2016=5y-3x/2017 và yz<3x
Cho x+y+z=0. Chung minh rằng (2011x/xy+2011x+2011) +(y/yz+y+2011) +(z/xz+z+1) =1 b, cho x, y thỏa mãn đẳng thức 5x^2+5y^2+8xy-2x+2y+2=0 Tính giá trị của M=(x+y) ^2015+(x-2)^2016+(y+1) ^2017
b: 5x^2+5y^2+8xy-2x+2y+2=0
=>4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0
=>(x-1)^2+(y+1)^2+(2x+2y)^2=0
=>x=1 và y=-1
M=(1-1)^2015+(1-2)^2016+(-1+1)^2017=1
1)Tìm tất cả các cặp số nguyên x,y thỏa mãn : x2=y(y+1)(y+2)(y+3)
2)Cho các số nguyên x,y,z thỏa mãn S=x+2y+3z+2016 và P=(x+2015)5+(2y-2016)5+(3z+2017)5
Mk đang cần gấp . Mơn mấy thím trc
tim x, y, z biet
1. \(\frac{x+y}{2015}=\frac{xy}{2016}=\frac{x-y}{2017}\)
2.\(\frac{2x+2}{3}=\frac{3y-1}{4}=\frac{4x+2}{5}\)va x+y+z=7
1) Áp dụng tích chất dãy tỉ số bằng nhau ta có:
\(\frac{x+y}{2015}=\frac{xy}{2016}=\frac{x-y}{2017}=\frac{x+y-x+y}{2015-2017}=\frac{2y}{-2}\)
\(=-y\)
\(\Rightarrow xy=-2016y;x+y=-2015y;\)
\(x-y=-2017y\)
\(\Rightarrow-2016y-xy=0\)
\(\Rightarrow y\left(-2016-x\right)=0\)
\(\Rightarrow\orbr{\orbr{\begin{cases}y=0\\-2016-x=0\end{cases}\Rightarrow}}\orbr{\begin{cases}y=0\\x=-2016\end{cases}}\)
\(+) \)\(y=0\Rightarrow0+x=-2015.0=0\Rightarrow x=0\)
\(+) \)\(x=-2016\Rightarrow-2016-y=-2017y\Rightarrow-2016\)
Vậy +) x=y=0
+) x=-2016;y=1
2) Có: \(\frac{2x+2}{3}=\frac{x+1}{1,5};\frac{4z+2}{5}=\frac{z+0,5}{1,25};\frac{3y-1}{4}=\frac{y-\frac{1}{3}}{\frac{4}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+1}{1,5}=\frac{y-\frac{1}{3}}{\frac{4}{3}}=\frac{z+0,5}{1,25}=\frac{x+y+z+\left(1-\frac{1}{3}+0,5\right)}{1,5+\frac{4}{3}+1,25}=\frac{7+\frac{7}{6}}{\frac{49}{12}}=2\)
Suy ra: \(x+1=2.1,5=3\Rightarrow x=2\)
\(y-\frac{1}{3}=2.\frac{4}{3}=\frac{8}{3}\Rightarrow y=3\)
\(z+0,5=2.1,25=2,5\Rightarrow z=2\)
Vậy x=2;y=3;z=2.
Câu 1 :
Áp dụng t/c dãy TSBN ta có : \(\frac{x+y}{2015}=\frac{xy}{2016}=\frac{x-y}{2017}=\frac{x+y+x-y}{2015+2017}=\frac{x}{2016}\)
\(\Rightarrow\frac{xy}{2016}=\frac{x}{2016}\)=> xy=x => xy-x=0 => x(y-1)=0 => x=0 hoặc y=1
+) Nếu x=0 => \(\frac{0+y}{2015}=\frac{0.y}{2016}\Rightarrow\frac{y}{2015}=0\Rightarrow y=0\)
+) Nếu y=1 => \(\frac{x+1}{2015}=\frac{x.1}{2016}\)=> 2016(x+1)=2015x => 2016x+2016 = 2015x => x=-2016
Vậy ...
Câu 2 :
Áp dụng t/c dãy TSBN ta có : \(\frac{2x+2}{3}=\frac{3y-1}{4}=\frac{4z+2}{5}=\frac{6.\left(2x+2\right)+4.\left(3y-1\right)+3.\left(4z+2\right)}{3.6+4.4+5.3}\)
\(=\frac{12\left(x+y+z\right)+14}{49}=\frac{12.7+14}{49}=2\)
Từ \(\frac{2x+2}{3}=2\Rightarrow2x+2\Rightarrow6\Rightarrow2x=4\Rightarrow x=2\)
Tương tự tìm đc y=3 và z=2
Vậy ...