Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xuandung Nguyen
Xem chi tiết
Xuandung Nguyen
13 tháng 8 2017 lúc 11:15

ai giải được tặng 1 thẻ vina 20k

💥Hoàng Thị Diệu Thùy 💦
14 tháng 9 2017 lúc 19:50

mk ko cần nên mk ko muốn giải và cx chẵng biết làm lun ^-^

Tô Trần Hoàng Triệu
25 tháng 7 2018 lúc 9:14

Số A luôn âm mà đề yêu cầu là lập phương của số tự nhiên nên suy ra đề sai 

Chi Khánh
Xem chi tiết
Đoàn Đức Hà
8 tháng 8 2021 lúc 18:02

\(\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{2}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}\)

\(=\frac{1}{2}\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)

Ta có đpcm. 

Khách vãng lai đã xóa
Hà Thiên Lộn
Xem chi tiết
pham dung
Xem chi tiết
pham dung
15 tháng 11 2017 lúc 21:47

Mọi người ơi trả lời hộ mình câu 3 nhé. cám ơn nhiều

Phạm Phương Anh
Xem chi tiết
Nguyễn Thị Đoan Trang
Xem chi tiết
Nguyễn Bá Huy h
Xem chi tiết
Trần Đức Vinh
Xem chi tiết

(\(x\) + 2)n+1 = ( \(x\) + 2)n+11

(\(x+2\))n+1 -  ( \(x\) + 2)n+11 = 0

(\(x\) + 2)n+1.(  1 + (\(x\) + 2)10) = 0

(\(x\) + 2)10 + 1 > 0 ∀ \(x\)

=> (\(x\) + 2)n+1 = 0 ⇒ \(x\) + 2  = 0 ⇒ \(x\) = -2

vậy \(x\) = -2

Nguyễn Hữu Thành Vinh
Xem chi tiết
Hoàng Đình Bảo
9 tháng 5 2022 lúc 12:33

$\frac{1.3.5...(2n-1)}{(n+1)(n+2)...(n+n)}=\frac{1}{2^n}(*)$

Với $n=1$ thì $(*)\Leftrightarrow \frac{1}{2}=\frac{1}{2}$

Vậy $(*)$ đúng với $n=1$

Giả sử với $n=k$,$ k\in \mathbb{N^*}$ thì $(*)$ đúng, tức là: 

$\frac{1.3.5...(2k-1)}{(k+1)(k+2)...(k+k)}=\frac{1}{2^k}$

Ta cần chứng minh với $n=k+1$ thì $(*)$ đúng, tức là: 

$\frac{1.3.5...(2k+1)}{(k+2)(k+3)...(2k+2)}=\frac{1}{2^{k+1}}=\frac{1}{2^k}.\frac{1}{2}$

$\Leftrightarrow \frac{1.3.5...(2k+1)}{(k+2)(k+3)...(2k+2)}=\frac{1.3.5...(2k-1)}{2(k+1)(k+2)...(k+k)}$

$\Leftrightarrow \frac{1.3.5...(2k-1)2k(2k+1)}{(k+2)(k+3)...2k(2k+1)(2k+2)}=\frac{1.3.5...(2k-1)}{2(k+1)(k+2)...2k}$

$\Leftrightarrow \frac{2k(2k+1)}{2k(2k+1)(2k+2)}=\frac{1}{2(k+1)}$

$\Leftrightarrow \frac{1}{(2k+2)}=\frac{1}{2(k+1)}$

Do đó với $n=k+1$ thì $(*)$ đúng

$\Rightarrow \frac{1.3.5...(2n-1)}{(n+1)(n+2)...(n+n)}=\frac{1}{2^n}$