chứng minh rằng v n là số tự nhiên thì n2+2017 không là số chính phương
2. Tìm các số tự nhiên n thoả mãn n2 +3n+2 là số nguyên tố.
3. Tìm các số tự nhiên n sao cho 2n +34 là số chính phương.
4. Chứng minh rằng tổng S = 14 +24 +34 +···+1004 không là số chính phương.
5. Tìm các số nguyên dương a ≤ b ≤ c thoả mãn abc,a+b+c,a+b+c+2 đều là các số nguyên tố
Mik gấp
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
2: A=n^2+3n+2=(n+1)(n+2)
Để A là số nguyên tố thì n+1=1 hoặc n+2=2
=>n=0
chứng minh rằng với mọi số tự nhiên n thì (n+2021)^2+2022 không là số chính phương
-Ta c/m: Với mọi số tự nhiên n thì \(\left(n+2021\right)^2+2022< \left(n+2022\right)^2\)
\(\Leftrightarrow\left(n+2021\right)^2+2022-\left(n+2022\right)^2< 0\)
\(\Leftrightarrow\left(n+2021-n-2022\right)\left(n+2021+n+2022\right)+2022< 0\)
\(\Leftrightarrow-\left(2n+4043\right)+2022< 0\)
\(\Leftrightarrow-2n-4043+2022< 0\)
\(\Leftrightarrow-2n-2021< 0\) (đúng do n là số tự nhiên)
-Từ điều trên ta suy ra:
\(\left(n+2021\right)^2< \left(n+2021\right)^2+2022< \left(n+2022\right)^2\)
-Vậy với mọi số tự nhiên n thì \(\left(n+2021\right)^2+2022\) không là số chính phương.
chứng minh rằng nếu n là số tự nhiên lẻ thì n^3 + 1 không thể là số chính phương
n lẻ nên n^3 lẻ. vậy n^3+1 chẵn. mà số chính phương chỉ có 2 là chẵn, còn lại lẻ ->đpcm
n có dạng 2k+1
n3+1 = (2k+1)3+1 = 8k3+12k2+6k+1+1=8k3+12k2+6k+2
Vì 8k3;6k và 2 không thể là số chính phương nên suy ra n3+1 không là số chính phương khi n lẻ.
Chứng minh rằng nếu n là số tự nhiên lẻ thì n^3 + 1 không thê là số chính phương
Chứng minh rằng với n là số tự nhiên lẻ thì n3+1 không thể là số chính phương?
đề bài là như vậy phải ko: Chứng minh rằng với n là số tự nhiên lẻ thì n3+1 không thể là số chính phương?
giả sử
n^3 +1 = a^2 , a là số tự nhiên
=>n>a>0
=>n lớn hơn hoặc bằng a+1
=> a^2 = n^3 +1 lớn hơn hoặc bằng (a+1)^3 +1
=>a^3 + 2a^2 +3a +2 nhỏ hơn hoặc bằng không
=> a=0
=> n= -1 vô lí
=> đpcm
Ko hiểu, tại sao n>a vậy. Thấy từ dòng n^3+1=a^2 => n>a ko thấy hợp lí cho lắm vì n với a chả có mối quan hệ nào cả, nếu n=1 thì a=căn2, vậy a>n mới đúng chứ
Chứng minh rằng, với mọi số tự nhiên n thì 3n + 4 không là số chính phương.
Chứng minh rằng nếu số tự nhiên a không phai là số chính phương thì là số vô tỉ
giả sử : ak2 là 1 số chính phương
<=> a\(\sqrt{k}=....\)
khi \(\sqrt{k}\) là một số thập phân có chu kì thì số a theo \(\sqrt{k}\) là số vô tỉ
Chứng minh rằng nếu số tự nhiên a không phải là số chính phương thì là số vô tỉ.
Giả sử \(\sqrt{a}\) là một số hữu tỉ thì \(\sqrt{a}\)=\(\frac{m}{n}\) với (m,n)=1
Khi đó \(a^2=\frac{m^2}{n^2}\)
Vì a là số tự nhiên nên \(m^2⋮n^2\)
hay là \(m⋮n\) ( trái với điều kiện (m,n)=1)
=> ĐPCM
Chứng minh rằng nếu số tự nhiên a không phai là số chính phương thì là số vô tỉ
ta có: ak2 là một số chính phương
<=>\(\sqrt{k}=...\)
khi \(\sqrt{k}\) <=> k là một số thập phân bất kì có chu kì thì a theo \(\sqrt{k}\) thì a phải là một số vô tỉ
các bạn thấy mình giải có đúng ko
Ta có: ak2 là một số CP
<=> \(\sqrt{k}=...\)
khi \(\sqrt{k}\) <=> k là một STP bất kì có chu kì thì a theo \(\sqrt{k}\) thì a phải là một số vô tỉ (ĐPCM)