Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Cảnh Toàn
Xem chi tiết
Phạm thị thu thảo
Xem chi tiết
Phan Thị Diệu Thúy
Xem chi tiết
Ma Sói
2 tháng 9 2018 lúc 21:03

cho hỏi a,b thuộc số nguyên không ?

Trinh Huy Hoang
Xem chi tiết
Nguyễn Thị Mai Trang
Xem chi tiết
Lê Nguyên Hạo
12 tháng 11 2016 lúc 18:13

nhắn cho thầy phynit

Linh Phương
12 tháng 11 2016 lúc 20:36

chị nhờ thầy e ạ

Xin hoài ms đk đó Nguyễn Thị Mai Trang

Tiểu thư họ Vũ
Xem chi tiết
Tiểu thư họ Vũ
26 tháng 7 2018 lúc 19:04

Mn trả lời nhanh nhanh giùm em với ạ. Em đang cần gấp...

Tiểu thư họ Vũ
28 tháng 7 2018 lúc 8:06

- Ta có: \(\sin\alpha+\cos\alpha=\frac{7}{5}\)  

        \(\Rightarrow\sin\alpha=\frac{7}{5}-\cos\alpha\)

- Theo tỉ số lượng giác của óc nhọn, ta có:

         \(\sin^2\alpha+\cos^2\alpha=1\)

\(\Leftrightarrow\left(\frac{7}{5}-\cos\alpha\right)^2+\cos^2\alpha=1\)

\(\Leftrightarrow\frac{49}{25}-\frac{14}{5}\cos\alpha+\cos^2\alpha+\cos^2\alpha=1\)

\(\Leftrightarrow50\cos^2\alpha-70\cos\alpha+48=0\)

\(\Leftrightarrow25\cos^2\alpha-35\cos\alpha+24=0\)

\(\Leftrightarrow\left(5\cos\alpha-4\right)\left(5\cos\alpha-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5\cos\alpha-4=0\\5\cos\alpha-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\cos\alpha=\frac{4}{5}\\\cos\alpha=\frac{3}{5}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\sin\alpha=\frac{7}{5}-\cos\alpha=\frac{7}{5}-\frac{4}{5}=\frac{3}{5}\\\sin\alpha=\frac{7}{5}-\cos\alpha=\frac{7}{5}-\frac{3}{5}=\frac{4}{5}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{\frac{3}{5}}{\frac{4}{5}}=\frac{3}{4}\\\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{\frac{4}{5}}{\frac{3}{5}}=\frac{4}{3}\end{cases}}\)

Kết luận: Vậy..........

kim chi nguyen
Xem chi tiết
Trần Thị Loan
10 tháng 7 2015 lúc 22:43

Bình phương 2 vế ta có:

\(a^2-a+1+a-a^2+1+2\sqrt{\left(a^2-a+1\right)\left(a-a^2+1\right)}\le4\)

<=>  \(2+2\sqrt{\left(a^2-a+1\right)\left(a-a^2+1\right)}\le4\)

<=> \(\sqrt{\left(1+\left(a^2-a\right)\right)\left(1-\left(a^2-a\right)\right)}\le1\) <=> \(\left(1+\left(a^2-a\right)\right)\left(1-\left(a^2-a\right)\right)\le1\)

<=> 1 - (a2 - a)2 \(\le\) 1 <=> (a2 - a)2 \(\ge\) 0 : Luôn đúng với mọi a => Bất đẳng thức đầu đúng với mọi 0 =< a <= 1

Dấu = xảy ra <=> a2 - a = 0 <=> a = 0 hoặc a = 1

Mr Lazy
10 tháng 7 2015 lúc 23:26

Ta có: \(\left(x-y\right)^2\ge0\Rightarrow\left(x+y\right)^2\le2\left(x^2+y^2\right)\), Dấu "=" xảy ra khi x = y

Áp dụng bất đẳng thức trên ta có:

\(VT^2=\left(\sqrt{a^2-a+1}+\sqrt{a-a^2+1}\right)\le2\left(a^2-a+1+a-a^2+1\right)=4\)

\(\Rightarrow VT\le2=VP\)(đpcm)

Dấu "=" xảy ra khi \(\sqrt{a^2-a+1}=\sqrt{a-a^2+1}\Leftrightarrow a^2-a=a-a^2\Leftrightarrow2a\left(a-1\right)=0\Leftrightarrow a=0\text{ hoặc }a=1\)

 

Dong tran le
Xem chi tiết
Akai Haruma
1 tháng 2 2017 lúc 21:10

Bạn xem lời giải tại đây:

https://hoc24.vn/hoi-dap/question/176012.html

Hoàng Tuấn Đăng
1 tháng 2 2017 lúc 21:11
phùng Thu Trang
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
23 tháng 6 2020 lúc 14:20

a) P(x) = ax2 + bx + c

P(-1) = a.(-1)2 + b.(-1) + c = a - b + c

P(-2) = a.(-2)2 + b.(-2) + c = 4a - 2b + c

b) Ta có : P(-1) + P(-2) = a - b + c + 4a - 2b + c = 5a - 3b + 2c 

Mà 5a - 3b + 2c = 0 ( theo đề bài )

=> P(-1) + P(-2) = 0 

=> P(-1) = -P(-2) ( hai số đối nhau )

=> P(-1) . -P(-2) \(\le\)0 ( đpcm ) 

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
23 tháng 6 2020 lúc 14:21

b) Có thể xảy ra trường hợp P(-1) = -P(-2) = 0 nên = 0 nhé 

Bình thường hai số đối nhân với nhau < 0 mà :)

Khách vãng lai đã xóa