a,b,c>0 và a+b+c=1
Tìm min
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{a^2+ac+c^2}\)
a,b,c>0. Min
P=\(\frac{a^3+b^3+c^3}{2abc}+\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{c^2+a^2}{b^2+ac}\)
Bạn tham khảo tại đây:
Câu hỏi của Ngô Ngọc Anh - Toán lớp 9 - Học toán với OnlineMath
Mọi người giúp e làm lời giải nhanh vs ạ e cần gấp trong tối nay
Cho a,b,c>0 và a+b+c=3.
Tìm Min A=\(\frac{a^3}{a^2+b^2+ab}+\frac{b^3}{b^2+c^2+bc}+\frac{c^3}{c^2+a^2+ac}\)
BĐt phụ : \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\)
c/m :\(3a^2-3ab+3b^2\ge a^2+ab+b^2\)
↔\(2a^2-4ab+2b^2\ge0\)
↔\(2\left(a-b\right)^2\ge0\)(luôn đúng)
Giải ;
ta có:\(\frac{a^3-b^3}{a^2+ab+b^2}+\frac{b^3-c^3}{b^2+bc+c^2}+\frac{c^3-a^3}{c^2+ac+a^2}=\left(a-b\right)+\left(b-c\right)+\left(c-a\right)=0\)
→\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ac+a^2}\)(1)
mà \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\Leftrightarrow\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\)
↔\(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\)
tương tự ta có:\(\frac{b^3+c^3}{b^2+bc+c^2}\ge\frac{1}{3}\left(b+c\right)\);\(\frac{c^3+a^3}{c^2+ca+a^2}\ge\frac{1}{3}\left(a+c\right)\)
cộng vế vs vế ta có:
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}+\frac{a^3}{c^2+ac+a^2}\ge\frac{2}{3}\left(a+b+c\right)\)
từ (1)→\(2\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\ge\frac{2}{3}\left(a+b+c\right)\)
↔ \(S\ge\frac{1}{3}\left(a+b+c\right)=1\)(đặt S luôn cho tiện)
dấu = xảy ra khi BĐt ở đầu đúng :\(\begin{cases}a=b\\b=c\\c=a\end{cases}\)mà a+b+c=3↔a=b=c=1
Cho a,b > 0; a+b+c=3. Tìm Min P = \(\frac{ab}{c^2\left(a+b\right)}+\frac{ac}{b^2\left(a+c\right)}+\frac{bc}{a^2\left(b+c\right)}\)
Ta có: \(P=\Sigma\frac{\left(\frac{1}{c^2}\right)}{\left(\frac{1}{a}+\frac{1}{b}\right)}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}=\frac{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{2}\ge\frac{\left(\frac{9}{a+b+c}\right)}{2}=\frac{3}{2}\)
Đẳng thức xảy ra khi a =b =c = 1.
True?
Ta có :
\(P=\frac{ab}{c^2\left(a+b\right)}+\frac{ac}{b^2\left(a+c\right)}+\frac{bc}{a^2\left(b+c\right)}\)
\(\Rightarrow P=\frac{\left(\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}}+\frac{\left(\frac{1}{b}\right)^2}{\frac{1}{c}+\frac{1}{a}}+\frac{\left(\frac{1}{a}\right)^2}{\frac{1}{c}+\frac{1}{b}}\)
\(\Rightarrow P\ge\frac{\left(\frac{1}{c}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}}\)
\(\Rightarrow P\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)
\(\Rightarrow P\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow P\ge\frac{1}{2}.\frac{9}{a+b+c}\)
\(\Rightarrow P\ge\frac{3}{2}\)
Dấu = xảy ra khi a=b=c=1
cho a,b,c là 3 số thực dg , tìm min của bt
\(P=\frac{a^3+b^3+c^3}{2abc}+\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{c^2+a^2}{b^2+ac}\)
Bạn nào học qua rồi thì giải hộ tớ bài này với.
1.Cho a, b, c là độ dài 3 cạnh của 1 tam giác
Chứng minh: (a+b-c)(b+c-a)(c+a-b)<=abc
2.Cho a, b, c>0 thoả mãn ab+bc+ca=1.
Tim min M = \(\frac{3a^2b^2+1}{c^2+1}+\frac{3b^2c^2+1}{a^2+1}+\frac{3c^2a^2+1}{b^2+1}\)
3.Cho a,b,c>0 thoả mãn a+b+c=3.
Tìm min N = \(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}\)
4.Cho a, b, c>0 thoả mãn abc=1
Chứng minh: \(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ac}<=1\)
a,b,c>0 tìm min
\(P=\frac{a^3+b^3+c^3}{2abc}+\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{c^2+a^2}{b^2+ca}\)
nhanh giúp với!
Áp dụng BĐT cô-si, ta có \(a^3+b^3+c^3\ge3abc\Rightarrow\frac{a^3+b^3+c^3}{2abc}\ge\frac{3}{2}\)
Mà \(\frac{a^2+b^2}{c^2+ab}\ge\frac{a^2+b^2}{c^2+\frac{a^2+b^2}{2}}=2\frac{a^2+b^2}{2c^2+a^2+b^2}\)
tương tự thì \(P\ge\frac{3}{2}+2\left(\frac{a^2+b^2}{2c^2+a^2+b^2}+\frac{b^2+c^2}{2a^2+b^2+c^2}+\frac{c^2+a^2}{2b^2+a^2+c^2}\right)\)
Đặt \(\hept{\begin{cases}a^2+b^2=x\\b^2+c^2=y\\c^2+a^2=z\end{cases}}\)
ta có \(P\ge\frac{3}{2}+2\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=\frac{3}{2}+2\left(\frac{x^2}{xy+xz}+\frac{y^2}{yz+yx}+\frac{z^2}{zx+zy}\right)\)
=>\(P\ge\frac{3}{2}+2.\frac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\frac{3}{2}+2.\frac{3\left(xy+yz+zx\right)}{2\left(xy+yz+zx\right)}\ge\frac{3}{2}+3=\frac{9}{2}\)
dấu xảy ra <>a=b=c>0
Vậy ...
^_^
1/ Cho a,b,c>0 và a+b+c =3
c/m: A=\(\frac{a^2}{2b+c}+\frac{b^2}{2c+a}+\frac{c^2}{2a+b}\). Tìm A min=?
2/Cho a,b,c và ab+bc+ca=3
c/m: \(a^3+b^3+c^3>=a^2+b^2+c^2\)
1/ Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel :
\(A\ge\frac{\left(a+b+c\right)^2}{3\left(a+b+c\right)}=\frac{a+b+c}{3}=\frac{3}{3}=1\)
Dấu "=" xảy ra <=> a=b=c=1
cho a,b,c>0 và a+c+b<=3. tìm min P = \(\frac{a^3}{b^2}\)+\(\frac{b^3}{c^2}\)+\(\frac{c^3}{a^2}\)+27(\(\frac{1}{ab}\)+\(\frac{1}{ac}\)+\(\frac{1}{bc}\))
a,b,c>0 cm \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}\ge\frac{a+b+c}{3}\)
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}\)
\(=\frac{a^4}{a^3+a^2b+ab^2}+\frac{b^4}{b^3+b^2c+bc^2}+\frac{c^4}{c^3+ac^2+ca^2}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(a+c\right)}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\frac{a^2+b^2+c^2}{a+b+c}\)
\(\ge\frac{\frac{\left(a+b+c\right)^2}{3}}{a+b+c}=\frac{a+b+c}{3}\)