Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cao Thị Thùy Dung
Xem chi tiết
pham thanh trung
Xem chi tiết
Nguyễn Diệu Huyền
Xem chi tiết
Nguyễn Diệu Huyền
3 tháng 12 2016 lúc 18:04

giúp mik với mik chuẩn bị phải thi HK

nguyễn như linh
Xem chi tiết
Nguyễn Phương Uyên
1 tháng 7 2019 lúc 18:40

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{2014^2}-1\right)\)

\(-A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{2014^2}\right)\)

\(-A=\frac{3}{2\cdot2}\cdot\frac{8}{3\cdot3}\cdot\frac{15}{4\cdot4}\cdot...\cdot\frac{4056195}{2014\cdot2014}\)

\(-A=\frac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2013\cdot2015\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2014\cdot2014\right)}\)

\(-A=\frac{\left(1\cdot2\cdot3\cdot...\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2015\right)}{\left(2\cdot3\cdot4\cdot...\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2014\right)}\)

\(-A=\frac{1\cdot2015}{2014\cdot2}=\frac{2015}{4028}\)

\(A=\frac{-2015}{4028}\)

huy vũ
Xem chi tiết
Hồ Thu Giang
20 tháng 9 2015 lúc 22:57

\(y=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)....\left(\frac{1}{2014^2}-1\right)\)

\(y=\left(\frac{-1.3}{2.2}\right)\left(\frac{-2.4}{3.3}\right)....\left(\frac{-2013.2015}{2014.2014}\right)\)

\(y=-\left(\frac{1.2....2013.3.4...2015}{2.3....2014.2.3....2014}\right)\)

\(y=-\left(\frac{2015}{2014.2}\right)\)

\(y=\frac{-2015}{4028}\)

\(x=\frac{-1}{2}=\frac{-2014}{4028}\)

Vì \(\frac{-2015}{4028}

Viên đạn bạc
Xem chi tiết
Phạm Thị Minh Châu
Xem chi tiết
Nguyễn Quế Sơn
5 tháng 2 2018 lúc 20:18

chưa rảnh

Phạm Thị Minh Châu
5 tháng 2 2018 lúc 20:29

vậy khi nào rảnh thì bạn giúp mk nha

Chien Binh Anh Duong
Xem chi tiết
nguyễn thị hồng hạnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 3 2021 lúc 13:48

Ta có: \(A=\dfrac{x-y}{x+y}\)

\(=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}\)

\(=\dfrac{x^2-y^2}{x^2+2xy+y^2}\)

Ta có: \(x^2+2xy+y^2>x^2+y^2\forall x>y>0\)

\(\Leftrightarrow\dfrac{x^2-y^2}{x^2+2xy+y^2}< \dfrac{x^2-y^2}{x^2+y^2}\)

hay A<B