Tìm dư trong phép chia: \(\left(x^{105}+x^{90}+x^{75}+...+x^{15}+1\right):\left(x^2-1\right)\)
Tìm dư trong phép chia \(\left(x^{105}+x^{90}+x^{75}+...+x^{15}+1\right)⋮\left(x^2-1\right)\)
Tính : \(\left(x^{105}+x^{90}+x^{75}+...+x^{15}+1\right):\left(x^2-1\right)\)
Không thực hiện phép tính chia, tìm đa thức dư trong phép chia
\(\left(x^{10}+x^9+x^8+...+x+1\right):\left(x^2-1\right)\)
Biết f(x) chia cho x-2 dư 7, chia cho \(\left(x^2+1\right)\) dư 3x+5. Tìm dư trong phép chia f(x) cho \(\left(x-2\right)\left(x^2+1\right)\)
tìm dư của phép chia
(x105+x90+x75+...+x15+1):(x2-1)
Tìm đa thức dư trong phép chia \(\left(x^{1234}-1\right)\) cho \(\left(x^2+1\right)\left(x^2-x+1\right)\)
Tìm số dư trong phép chia \(\left(x^{1999}+x^{999}+x^{99}+x^9+2004\right):\left(x^2-1\right)\)
Phạm Minh Đức đúng ròi đó :)
f(x) = ( x1999 + x999 + x99 + x9 + 2004 ) : ( x2 - 1 )
f(x) = ( x1999 + x999 + x99 + x9 + 2004 ) : ( x - 1 ) ( x + 1 )
Áp dụng định lý Bezout ta có 2 đa thức dư :
+) f(1) = 11999 + 1999 + 199 + 19 + 2004 = 2008
+) f(-1) = (-1)1999 + (-1)999 + (-1)99 + (-1)9 + 2004 = 2000
Vậy phép chia trên có 2 đa thức dư là f(1) = 2008 và f(-1) = 2000
Tìm đa thức dư trong phép chia
\(\left(x^{54}+x^{45}+x^{36}+...+x^9+1\right):\left(x^2-1\right)\)
Vì đa thức chia có bậc 2 nên bậc của đa thức dư không vượt quá 1 .
Ta có :
\(\left(x^{54}+x^{45}+...+x^9+1\right)\)
\(=\left(x^2-1\right).Q+\left(ax+b\right)\)
Lần lượt ta có giá trị riêng là :
\(x=1;x=-1\)
\(\Rightarrow\hept{\begin{cases}7=a+b\\1=-a+b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=3\\b=4\end{cases}}\)
Vậy đa thức dư cần tìm là : \(3x+4\)
Do bậc của số chia là 2 nên số dư sẽ có dạng \(ax+b\)
Đặt \(x^{54}+x^{45}+...+x^9+1=\left(x^2-1\right).G\left(x\right)+ax+b\) với \(G\left(x\right)\) là đa thức thương
Thay \(x=1\) vào đẳng thức trên ta được : \(1+1+1...+1+1=a+b\Leftrightarrow a+b=7\) (1)
Thay \(x=-1\) vào đẳng thức trên ta được :\(1-1+1-1+...-1+1=-a+b\Leftrightarrow-a+b=1\)(2)
Cộng \(\left(1\right);\left(2\right)\) ta được \(2b=8\Rightarrow b=4\Rightarrow a=7-b=7-4=3\)
Vậy số dư của phép chia trên là \(3x+4\)
tìm số dư trong phép chia
\(\left(x^{67}+x^{47}+x^{27}+x^7+x+1\right)\)):\(\left(x^2-1\right)\)
đa thức chia có bậc 2 nên đa thức dư có bậc không quá 1. vậy đa thức dư có bậc nhất dạng ax+b
Ta có: \(x^{67}+x^{47}+x^{27}+x^7+x+1=\left(x^2-1\right).Q\left(x\right)+ax+b\)
Cho x=1 rồi x=-1 ta được: \(\hept{\begin{cases}1+1+1+1+1+1=a+b\\-1-1-1-1-1+1=-a+b\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=6\\-a+b=-4\end{cases}\Leftrightarrow\hept{\begin{cases}a=5\\b=1\end{cases}}}\)
Vậy dư trong phép chia trên là 5x+1