Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bạch Vy
Xem chi tiết

\(x+4y-x\sqrt3=\left(y-2\right)\sqrt3+3\)

=>\(\begin{cases}-x=y-2\\ x+4y=3\end{cases}\Rightarrow\begin{cases}x=-y+2\\ -y+2+4y=3\end{cases}\)

=>\(\begin{cases}x=-y+2\\ 3y=1\end{cases}\Rightarrow\begin{cases}y=\frac13\\ x=-\frac13+2=2-\frac13=\frac53\end{cases}\)

Trương Tuệ Nga
Xem chi tiết
Nhật Hoàng
Xem chi tiết
Lê Hiền Trang
Xem chi tiết
Xuân Dũng Đào
13 tháng 9 lúc 21:11

chắc bạn đang học lớp 7 nên mik sẽ giải kiểu lớp 7 nha
mỗi câu mik chia làm 2 bài nhé!
Bài 1. Tìm \(\left(\right. x , y \left.\right) \in \mathbb{Q}^{2}\)

(a) \(x + 3 y - x \sqrt{5} = y \sqrt{5} + 7\)

\(\Rightarrow - \left(\right. x + y \left.\right) \sqrt{5} = 7 - x - 3 y\).

Vế trái vô tỉ (nếu \(x + y \neq 0\)), vế phải hữu tỉ.
\(\Rightarrow x + y = 0 , \textrm{ }\textrm{ } 7 - x - 3 y = 0\).

\(\Rightarrow x = - y , \textrm{ }\textrm{ } 7 + y - 3 y = 0 \Rightarrow y = \frac{7}{2} , x = - \frac{7}{2}\).

Đáp số: \(\left(\right. - \frac{7}{2} , \frac{7}{2} \left.\right)\).

(b) \(5 x + y - \left(\right. 2 x - 1 \left.\right) \sqrt{7} = y \sqrt{7} + 2\).

\(\Rightarrow - \left(\right. 2 x + y - 1 \left.\right) \sqrt{7} = 2 - 5 x - y\).

\(\Rightarrow 2 x + y - 1 = 0 , \textrm{ }\textrm{ } 2 - 5 x - y = 0\).

Giải hệ:

\(\left{\right. 2 x + y = 1 \\ 5 x + y = 2 \Rightarrow x = \frac{1}{3} , y = \frac{1}{3} .\)

Đáp số: \(\left(\right. \frac{1}{3} , \frac{1}{3} \left.\right)\).

Bài 2. Tìm \(\left(\right. x , y \left.\right) \in \mathbb{Q}^{2}\)

(a) \(x + y + 61 = 10 \sqrt{x} + 12 \sqrt{y}\).

Đặt \(x = a^{2} , y = b^{2}\).

\(\Rightarrow a^{2} + b^{2} + 61 = 10 a + 12 b\).

Thử \(a = 5 , b = 6\): \(25 + 36 + 61 = 122 , \textrm{ }\textrm{ } 10 \cdot 5 + 12 \cdot 6 = 122\).

Đáp số: \(\left(\right. 25 , 36 \left.\right)\).

(b) \(2 x + y + 4 = 2 \sqrt{x} \left(\right. \sqrt{y} + 2 \left.\right)\).

Đặt \(x = a^{2} , y = b^{2}\).

\(\Rightarrow 2 a^{2} + b^{2} + 4 = 2 a b + 4 a\).

\(\Rightarrow \left(\right. a - b \left.\right)^{2} + 2 \left(\right. a - 2 \left.\right) = 0\).

\(\Rightarrow a = 2 , b = 2\).

Đáp số: \(\left(\right. 4 , 4 \left.\right)\).

👉 Vậy:

Bài 1(a): \(\left(\right. - 7 / 2 , 7 / 2 \left.\right)\).Bài 1(b): \(\left(\right. 1 / 3 , 1 / 3 \left.\right)\).Bài 2(a): \(\left(\right. 25 , 36 \left.\right)\).Bài 2(b): \(\left(\right. 4 , 4 \left.\right)\).
cho mik xin tick nha. Cảm ơn cậu !


chien Nguyen
Xem chi tiết

Ta có: \(\frac{2z-4x}{3}=\frac{3x-2y}{4}=\frac{4y-3z}{2}\)

=>\(\frac{6z-12x}{9}=\frac{12x-8y}{16}=\frac{8y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{6z-12x}{9}=\frac{12x-8y}{16}=\frac{8y-6z}{4}=\frac{6z-12x+12x-8y+8y-6z}{9+16+4}=0\)

=>6z-12x=0 và 12x-8y=0 và 8y-6z=0

=>12x=8y=6z

=>\(\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)

=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)

=>x=2k; y=3k; z=4k(Với k∈N*)

\(200

=>\(200<\left(3k\right)^2+\left(4k\right)^2<450\)

=>\(200<25k^2<450\)

=>\(8

mà k là số nguyên dương

nên k∈{3;4}

TH1: k=3

=>\(\begin{cases}x=2\cdot3=6\\ y=3\cdot3=9\\ z=4\cdot3=12\end{cases}\)

TH2: k=4

=>\(\begin{cases}x=2\cdot4=8\\ y=3\cdot4=12\\ z=4\cdot4=16\end{cases}\)

dâu cute
Xem chi tiết
shiyori
4 tháng 7 2023 lúc 16:06

(x;y;z)={(6;9;12);(8;12;16)}

Giải thích các bước giải:

2z−4x3=3x−2y4=4y−3z2⇒3(2z−4x)9=4(3x−2y)16=2(4y−3z)4=6z−12x+12x−8y+8y−6z9+16+4=0

⇒{2z−4x=03x−2y=04y−3z=0⇒y=34z

mà 200<y2+z2<450

⇒200<(34z)2+z2<450⇔200<2516z2<450⇔128<z2<288

Vì z là số nguyên dương ⇒128<z<288

⇒z∈{12;13;14;15;16}

mà y là số nguyên dương và y=34z

⇒z∈{12;16}

Thế vào y=34z và 2z-4x=0

+) Với z=12⇒y=34.12=6

                    2.12-4x=0⇒x=6

Với z=16⇒y=34.16=12

    2.16-4x=0⇒x=8

Vậy ta có các cặp nghiệm là: 

shiyori
4 tháng 7 2023 lúc 16:06

(x;y;z)={(6;9;12);(8;12;16)}

Giải thích các bước giải:

2z−4x3=3x−2y4=4y−3z2⇒3(2z−4x)9=4(3x−2y)16=2(4y−3z)4=6z−12x+12x−8y+8y−6z9+16+4=0

⇒{2z−4x=03x−2y=04y−3z=0⇒y=34z

mà 200<y2+z2<450

⇒200<(34z)2+z2<450⇔200<2516z2<450⇔128<z2<288

Vì z là số nguyên dương ⇒128<z<288

⇒z∈{12;13;14;15;16}

mà y là số nguyên dương và y=34z

⇒z∈{12;16}

Thế vào y=34z và 2z-4x=0

+) Với z=12⇒y=34.12=6

                    2.12-4x=0⇒x=6

Với z=16⇒y=34.16=12

    2.16-4x=0⇒x=8

Vậy ta có các cặp nghiệm là: 

shiyori
4 tháng 7 2023 lúc 16:32

(x;y;z)={(6;9;12);(8;12;16)}

Giải thích các bước giải:

⇒{2z−4x=03x−2y=04y−3z=0⇒y=34z

mà 200<y2+z2<450

⇒200<(34z)2+z2<450⇔200<2516z2<450⇔128<z2<288

Vì z là số nguyên dương ⇒128<z<288

⇒z∈{12;13;14;15;16}

mà y là số nguyên dương và y=34z

⇒z∈{12;16}

Thế vào y=34z và 2z-4x=0

+) Với z=12⇒y=34.12=6

                    2.12-4x=0⇒x=6

Với z=16⇒y=34.16=12

    2.16-4x=0⇒x=8

Vậy ta có các cặp nghiệm là:

Sakura
Xem chi tiết
Chi Khánh
Xem chi tiết
Capheny Bản Quyền
15 tháng 8 2021 lúc 13:42

3x + /2x 

3x ;luôn là số nguyên 

Vậy để thỏa đề thì 2/x phải là số nguyên 

=> 2 chia hết cho x 

x thuộc ước của 2 

mà x > 0 

Vậy x = 1 hoặc x = 2 

Khách vãng lai đã xóa
Lê Hoàng Minh +™( ✎﹏TΣΔ...
15 tháng 8 2021 lúc 13:45

2/x là số nguyên thì xƯ(2)=(−2;−1;1;2)x∈Ư(2)=(−2;−1;1;2)

Mà x > 0 ⇒x=(1;2)

nha bạn chúc bạn học tốt nha 

Khách vãng lai đã xóa
Minh Anh
Xem chi tiết
Nguyễn Ngọc Phương Anh
24 tháng 2 2024 lúc 22:16

không bt gì hết á