Tìm tất cả các số hữu tỷ x,y thỏa mãn x+4y-x√3=(y-2)√3+3
Tìm tất cả các số hữu tỉ x,y thoả mãn x+4y − x√3 = (y − 2)√3+3
\(x+4y-x\sqrt3=\left(y-2\right)\sqrt3+3\)
=>\(\begin{cases}-x=y-2\\ x+4y=3\end{cases}\Rightarrow\begin{cases}x=-y+2\\ -y+2+4y=3\end{cases}\)
=>\(\begin{cases}x=-y+2\\ 3y=1\end{cases}\Rightarrow\begin{cases}y=\frac13\\ x=-\frac13+2=2-\frac13=\frac53\end{cases}\)
Tìm tất cả các số nguyên dương x,y,z thỏa mãn \(\frac{x+y\sqrt{2017}}{y+z\sqrt{2017}}\) là số hữu tỷ và (y_2)(4xz+6y-3) là số nguyên tố
Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn: \(^{x^2+2y^2-3xy+2x-4y+3=0}\)
Bài 4.
Tìm tất cả các số hữu tỉ x,y thỏa mãn (a) x+3y−x√5 = y√5+7 (b) 5x+y−(2x−1)√7 = y√7+2.
Tìm tất cả các cặp số hữu tỉ (x,y) thỏa mãn (a) x+y+61 = 10√x+12√y (b) 2x+y+4 = 2√x(√y+2)
chắc bạn đang học lớp 7 nên mik sẽ giải kiểu lớp 7 nha
mỗi câu mik chia làm 2 bài nhé!
Bài 1. Tìm \(\left(\right. x , y \left.\right) \in \mathbb{Q}^{2}\)
(a) \(x + 3 y - x \sqrt{5} = y \sqrt{5} + 7\)
\(\Rightarrow - \left(\right. x + y \left.\right) \sqrt{5} = 7 - x - 3 y\).
Vế trái vô tỉ (nếu \(x + y \neq 0\)), vế phải hữu tỉ.
\(\Rightarrow x + y = 0 , \textrm{ }\textrm{ } 7 - x - 3 y = 0\).
\(\Rightarrow x = - y , \textrm{ }\textrm{ } 7 + y - 3 y = 0 \Rightarrow y = \frac{7}{2} , x = - \frac{7}{2}\).
Đáp số: \(\left(\right. - \frac{7}{2} , \frac{7}{2} \left.\right)\).
(b) \(5 x + y - \left(\right. 2 x - 1 \left.\right) \sqrt{7} = y \sqrt{7} + 2\).
\(\Rightarrow - \left(\right. 2 x + y - 1 \left.\right) \sqrt{7} = 2 - 5 x - y\).
\(\Rightarrow 2 x + y - 1 = 0 , \textrm{ }\textrm{ } 2 - 5 x - y = 0\).
Giải hệ:
\(\left{\right. 2 x + y = 1 \\ 5 x + y = 2 \Rightarrow x = \frac{1}{3} , y = \frac{1}{3} .\)
Đáp số: \(\left(\right. \frac{1}{3} , \frac{1}{3} \left.\right)\).
Bài 2. Tìm \(\left(\right. x , y \left.\right) \in \mathbb{Q}^{2}\)(a) \(x + y + 61 = 10 \sqrt{x} + 12 \sqrt{y}\).
Đặt \(x = a^{2} , y = b^{2}\).
\(\Rightarrow a^{2} + b^{2} + 61 = 10 a + 12 b\).
Thử \(a = 5 , b = 6\): \(25 + 36 + 61 = 122 , \textrm{ }\textrm{ } 10 \cdot 5 + 12 \cdot 6 = 122\).
Đáp số: \(\left(\right. 25 , 36 \left.\right)\).
(b) \(2 x + y + 4 = 2 \sqrt{x} \left(\right. \sqrt{y} + 2 \left.\right)\).
Đặt \(x = a^{2} , y = b^{2}\).
\(\Rightarrow 2 a^{2} + b^{2} + 4 = 2 a b + 4 a\).
\(\Rightarrow \left(\right. a - b \left.\right)^{2} + 2 \left(\right. a - 2 \left.\right) = 0\).
\(\Rightarrow a = 2 , b = 2\).
Đáp số: \(\left(\right. 4 , 4 \left.\right)\).
👉 Vậy:
Bài 1(a): \(\left(\right. - 7 / 2 , 7 / 2 \left.\right)\).Bài 1(b): \(\left(\right. 1 / 3 , 1 / 3 \left.\right)\).Bài 2(a): \(\left(\right. 25 , 36 \left.\right)\).Bài 2(b): \(\left(\right. 4 , 4 \left.\right)\).C).(0,5 diem) 5 các số nguyên dương x, y, z thỏa tìm tất cả các số nguyên dương thỏa manc mãn: (2z - 4x)/3 = (3x - 2y)/4 = (4y - 3z)/2 và 200 < y ^ 2 + z ^ 2 < 450
Ta có: \(\frac{2z-4x}{3}=\frac{3x-2y}{4}=\frac{4y-3z}{2}\)
=>\(\frac{6z-12x}{9}=\frac{12x-8y}{16}=\frac{8y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{6z-12x}{9}=\frac{12x-8y}{16}=\frac{8y-6z}{4}=\frac{6z-12x+12x-8y+8y-6z}{9+16+4}=0\)
=>6z-12x=0 và 12x-8y=0 và 8y-6z=0
=>12x=8y=6z
=>\(\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)
=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
=>x=2k; y=3k; z=4k(Với k∈N*)
\(200
=>\(200<\left(3k\right)^2+\left(4k\right)^2<450\)
=>\(200<25k^2<450\)
=>\(8
mà k là số nguyên dương
nên k∈{3;4}
TH1: k=3
=>\(\begin{cases}x=2\cdot3=6\\ y=3\cdot3=9\\ z=4\cdot3=12\end{cases}\)
TH2: k=4
=>\(\begin{cases}x=2\cdot4=8\\ y=3\cdot4=12\\ z=4\cdot4=16\end{cases}\)
tìm tất cả các số nguyên dương x, y, a thỏa mãn : 2z - 4x/3 = 3x - 2y/4 = 4y - 3z/2 và 200 < y^2 + z^2 < 450
giúp mk với ạ!
Giải thích các bước giải:
mà
Vì z là số nguyên dương
mà y là số nguyên dương và
Thế vào và
+) Với
Với
Vậy ta có các cặp nghiệm là:
Giải thích các bước giải:
mà
Vì z là số nguyên dương
mà y là số nguyên dương và
Thế vào và
+) Với
Với
Vậy ta có các cặp nghiệm là:
Giải thích các bước giải:
mà
Vì z là số nguyên dương
mà y là số nguyên dương và
Thế vào và
+) Với
Với
Vậy ta có các cặp nghiệm là:
1/ tìm x,y nguyên dương thỏa mãn: \(x^2-y^2+2x-4y-10=0\)0
2/giải pt nghiệm nguyên :\(x^2+2y^2+3xy+3x+5y=15\)
3/tìm các số nguyên x;y thỏa mãn:\(x^3+3x=x^2y+2y+5\)
4/tìm tất cả các nghiệm nguyên dương x,y thỏa mãn pt:\(5x+7y=112\)
Tìm tất cả các số hữu tỷ x > 0 thỏa mãn 3x + \(\frac{2}{x}\)là số nguyên
Giải hộ mik nhen . Thanh kiu :3
3x + /2x
3x ;luôn là số nguyên
Vậy để thỏa đề thì 2/x phải là số nguyên
=> 2 chia hết cho x
x thuộc ước của 2
mà x > 0
Vậy x = 1 hoặc x = 2
2/x là số nguyên thì x∈Ư(2)=(−2;−1;1;2)x∈Ư(2)=(−2;−1;1;2)
Mà x > 0 ⇒x=(1;2)
nha bạn chúc bạn học tốt nha
Câu 1 : Làm tròn số 1,158 đến chữ số thập phân thứ nhất Câu 2 : Tìm tất cả các giá trị của x thỏa mãn |X| = 1/2 Câu 3 : Tìm 2 số x ; y biết: x/3 = y/5 và x+y= - 16 Câu 4 : Số nào dưới đây là số hữu tỉ dương Số 5 : Kết quả của phép tính 2/3 + 7/3 Câu 6 : Tìm x Biết x : (-3)⁴ = (-3)² vậy x = ?