một tam giác cân có đường cao ứng với cạnh đáy bằng 15 cm, đường cao ứng với cạnh bên bằng 20 cm. Tính các cạnh của tam giác đó hoặc làm tròn đến chữ số thập phân thứ nhất.
bài 1: Tính cạnh đáy BC của tam giác cân ABC biết đường cao ứng với cạnh đáy bằng 15,6 cm và đường cao ứng với cạnh bên bằng 12 cm
bài 2: Cho tam giác ABC vuông tại A , đường phân giác AD, đường cao AH.Biết BD = 7,5 cm và CD = 10 cm . Tính HA,HB,HD
Tính cạnh đáy BC của tam giác cân ABC . Biết đường cao ứng với cạnh đáy bằng 15,6 cm và đường cao ứng với cạnh bên bằng 12 cm.
Đặt BC = 2x, từ tính chất của tam giác cân ta suy ra CH = x
Áp dụng định lí Pitago tính được AC =
Từ KBC HAC
hay
Đưa về phương trình 15,62 + x2 = 6,76x2
Giải phương trình trên ta được nghiệm dương x = 6,5
Vậy BC = 2.6,5 = 13(cm)
Câu 1:Tính độ dài cạnh AB của tam giác ABC vuông tại A có hai đường trung tuyến AM và BN lần lượt bằng 6 cm và 9 cm.
Câu 2: Cho hình thang cân ABCD, đáy lớn CD=10 cm, đáy nhỏ bằng đường cao, đường chéo vuông góc với cạnh bên. Tính độ dài đường cao của hình thang cân đó.
Câu 3: Cho tam giác ABC cân tại A, đường cao ứng với cạnh đáy có độ dài 15,6 cm, đường cao ứng với cạnh bên dài 12 cm. Tính độ dài cạnh đáy BC.
Câu 4: Cho tam giác ABC vuông tại A, AB<AC; gọi I là giao điểm các đường phân giác, M là trung điểm BC . Cho biết góc BIM bằng 90°. Tính BC:AC:AB.
Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
=> AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.
Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago) mà BN=9cm (gt)
=>AN2+AB2=81 Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81 (1)
Tam giác ABC vuông tại A có: AC2+AB2=BC2 => BC2 - AB2 = AC2 (2)
Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC2 - AB2)+AB2=81 mà BC=12(cmt)
=> 36 - \(\frac{1}{4}\)AB2+AB2=81
=> 36+\(\frac{3}{4}\)AB2=81
=> AB2=60=>AB=\(\sqrt{60}\)
C2
Cho hình thang cân ABCD có đáy lớn CD = 1
C4
Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath
tính cạnh đáy BC của tam giác ABC cân, biết đường cao tương ứng của cạnh đáy bằng 15,6 cm và đường cao tương ứng của cạnh bên bằng 12 cm
Tính độ dài đường trung tuyến ứng với cạnh huyển của một tam giác vuông có các cạnh góc vuông bằng 5cm và 10 cm (làm tròn kết quả đến chữ số thập phân)
Theo định lý Py-ta-go ta có độ dài cạnh huyền là
\(\sqrt{5^{2} + 10^{2}}\)= \(\sqrt{25 + 100}\)= \(\sqrt{125}\)\(\approx\)11,1 (cm)
Vậy .........................
_______________ JK ~ Liên Quân Group ________________
Giả sử ∆ ABC có ˆA=900A^=900 , M trung điểm của BC; AB = 5cm; AC = 10cm. Theo định lý Pi-ta-go ta có:
\(BC^2=AB^2+AC^2\)
\(BC=\sqrt{5^2+10^2}=\sqrt{125}\approx11,2cm\)
\(AM=\dfrac{1}{2}BC\) (tính chất tam giác vuông)
⇒ \(AM\approx\dfrac{1}{2}.11,2=5,6cm\)
Tính độ dài đường trung tuyến ứng với cạnh huyền của một tam giác vuông có các cạnh góc vuông bằng 5cm và 10cm. (làm tròn kết quả đến chữ số thập phân thứ nhất)
Giả sử tam giác ABC có ∠ A = 90 0 , M trung điểm BC; AB = 5cm, AC = 10cm
Áp dụng định lý Pi-ta-go vào tam giác vuông ABC, ta có:
B C 2 = A B 2 + A C 2
BC = 5 2 + 10 2 = 125 ≈ 11,2 (cm)
Mà AM = 1/2 BC (tính chất tam giác vuông)
⇒ AM = 1/2 .11,2 = 5,6 (cm)
Cho Δ ABC cân tại A có BC = 30( cm ), đường cao AH = 20 ( cm ). Tính đường cao ứng với cạnh bên của tam giác cân đó.
Xét Δ ABC cân tại A có BC = 30( cm )
⇒ BH = CH = 15( cm ).
Áp dụng đinh lý Py – ta – go ta có:
Cho Δ ABC cân tại A có BC = 30( cm ), đường cao AH = 20 ( cm ). Tính đường cao ứng với cạnh bên của tam giác cân đó.
Xét Δ ABC cân tại A có BC = 30( cm )
⇒ BH = CH = 15( cm ).
Áp dụng đinh lý Py – ta – go ta có:
Cạnh bên của một tam giác cân bằng 13,6 cm Góc ở đáy bằng 30 độ
aTính độ dài đường tròn và diện tích hình tròn ngoại tiếp tam giác cân đó
bTính diện tích hai hình viên phân ứng với hai cạnh bên