Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Đức Trí
18 tháng 8 2023 lúc 12:35

Gọi \(a;b;c\) là các cạnh tam vuông

Theo đề bài ta có :

 \(\left\{{}\begin{matrix}a^2+b^2=c^2\\\dfrac{1}{2}ab=\left(a+b+c\right)\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=c^2\left(1\right)\\ab=2\left(a+b+c\right)\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow c^2=\left(a+b\right)^2-2ab\)

\(\Leftrightarrow c^2=\left(a+b\right)^2-4\left(a+b+c\right)\) (do (2))

\(\Leftrightarrow c^2+4=\left(a+b\right)^2-4\left(a+b\right)-4c+4\)

\(\Leftrightarrow\left(a+b\right)^2-4\left(a+b\right)+4=c^2+4c+4\)

\(\Leftrightarrow\left(a+b-2\right)^2=\left(c+2\right)^2\)

\(\Leftrightarrow a+b-2=c+2\left(đk:a+b\ge2\right)\)

\(\Leftrightarrow c=a+b-4\)

Thay vào \(\left(2\right)\) ta được

\(ab=2\left(a+b+a+b-4\right)\)

\(\Leftrightarrow ab=4a+4b-8\)

\(\Leftrightarrow ab-4a-4b+16=8\)

\(\Leftrightarrow a\left(b-4\right)-4\left(b-4\right)=8\)

\(\Leftrightarrow\left(a-4\right)\left(b-4\right)=8\)

\(\Leftrightarrow\left(a-4\right);\left(b-4\right)\in\left\{1;2;4;8\right\}\)

\(\Leftrightarrow\left(a;b\right)\in\left\{\left(5;12\right);\left(6;8\right);\left(8;6\right);\left(12;5\right)\right\}\)

\(\Leftrightarrow\left(a;b;c\right)\in\left\{\left(5;12;13\right);\left(6;8;10\right);\left(8;6;10\right);\left(12;5;13\right)\right\}\) thỏa đề bài

Siêu Nhân Lê
Xem chi tiết
Nguyễn Thị Bich Phương
Xem chi tiết
Phí Ngọc Tú
Xem chi tiết
TH
Xem chi tiết
Nao Tomori
Xem chi tiết
Huỳnh Quang Sang
14 tháng 2 2018 lúc 21:31

Giải: Gọi các cạnh của tam giác vuông là x, y, z; trong đó cạnh huyền là z (x, y, z là các số nguyên dương). Ta có xy = 2(x + y + z) (1) và x2 + y2 = z2 (2) Từ (2) suy ra z2 = (x + y)2 - 2xy, thay (1) vào ta có:                     z2 = (x + y)2 - 4(x + y + z)                     z2 + 4z = (x + y)2 - 4(x + y)                     z2 + 4z + 4 = (x + y)2 - 4(x + y) + 4                     (z + 2)2 = (x + y - 2)2, suy ra z + 2 = x + y - 2                      z = x + y - 4 thay vào 1 ta được:                      xy = 2(x + y + x + y - 4)                      xy - 4x - 4y = -8                       (x - 4)(y - 4) = 8 = 1.8 = 2.4 Từ đo ta tìm được các giá trị của x, y, z là; (x = 5, y = 12, z = 13); (x = 12, y = 5, z = 13); (x = 6, y = 8, z = 10); (x = 8, y = 6, z = 10).
 

Bui Huyen
14 tháng 2 2018 lúc 22:20

sang cho hỏi 

sao lại có

ab=2(a+b+c)

Phan Nghĩa
Xem chi tiết
Tran Le Khanh Linh
13 tháng 8 2020 lúc 20:56

gọi các cạnh của tam giác vuông là x,y,z trong đó z là cạnh huyền

theo đề ra ta có xy=2(x+y+z) (1) và x2+y2=z2

từ x2+y2=z2 => z2=(x+y)2-2xy thay vào (1) ta có z2=(x+y)2-4(x+y+z)

z2+4z=(x+y)2-4(x+y)

z2+4z+4=(x+y)2-4(x+y)+4

(z+2)2=(x+y-2)2

=> z+2=x+y-2

=> z=x+y-4 thay vào (1) ta được xy=2(x+y+x+y-4)

xy=4x+4y-8

xy=-4x-4y=-8

x(y-4)-4(y-4)-16=-8

(x-4)(y-4)=8

(x-4)(y-4)=1.8=2.4

từ đó tìm được (x;y;z)=(5;12;13);(12;5;13);(6;8;10);(8;6;10)

Khách vãng lai đã xóa
Trí Tiên亗
13 tháng 8 2020 lúc 21:08

THAM khảo

Gọi a, b, c là số đo 3 cạnh của tam giác vuông cần tìm. Giả sử \(1\le a\le b\le c\)

Ta có hệ phương trình \(\hept{\begin{cases}a^2+b^2=c^2\left(1\right)\\ab=2\left(a+b+c\right)\left(2\right)\end{cases}}\)

Từ (1) \(c^2=\left(a+b\right)^2-2ab\)

\(\Leftrightarrow c^2=\left(a+b\right)^2-4\left(a+b+c\right)\)( theo (2))

\(\Leftrightarrow\left(a+b\right)^2-4\left(a+b\right)=c^2+4c\)

\(\left(a+b-2\right)^2=\left(c+2\right)^2\)

\(c=a+b-4\)

Thay vào (2) ta được

\(ab=2\left(a+b+a+b-4\right)\)

\(ab-4a-4b+8=0\)

\(\Leftrightarrow b\left(a-4\right)-4\left(a-4\right)=8\)

\(\Leftrightarrow\left(a-4\right)\left(b-4\right)=8\)

Phân tích 8 = 1.8 = 2.4 nên ta có:

\(\hept{\begin{cases}a=5\\b=12\end{cases}}\)hoặc \(\hept{\begin{cases}a=6\\b=8\end{cases}}\)

Từ đó ta có 2 tam giác vuông có các cạnh (5;12;13):(6;8;10) 

CRE: inter

Khách vãng lai đã xóa
CR7 victorious
Xem chi tiết
Rubikvndevil
2 tháng 10 2016 lúc 17:05

Nguyễn Minh Phương: đậm chất trẻ trâu,giỏi thì làmđi

Nghĩa Nam Lê
16 tháng 1 2017 lúc 21:19

Gọi a, b, c là số đo 3 cạnh của tam giác vuông cần tìm. Giả sử 1≤a≤b<c1≤a≤b<c
Ta có hệ phương trình : {a2+b2=c2(1)ab=2(a+b+c)(2){a2+b2=c2(1)ab=2(a+b+c)(2)

Từ (1)  c2=(a+b)2−2abc2=(a+b)2−2ab

⇔c2=(a+b)2−4(a+b+c)⇔c2=(a+b)2−4(a+b+c) (theo (2))
⇔(a+b)2−4(a+b)=c2+4c⇔(a+b)2−4(a+b)=c2+4c
(a+b−2)2=(c+2)2(a+b−2)2=(c+2)2
c = a + b − 4.
Thay vào (2) ta được: ab = 2(a + b + a + b − 4)
ab −4a−4b + 8 = 0

⇔⇔ b(a −4) −4(a−4) = 8

⇔⇔(a −4)(b−4) = 8

Phân tích 8 = 1.8 = 2.4 nên ta có:

{a=5b=12{a=5b=12 hoac {a=6b=8{a=6b=8

Từ đó ta có 2 tam giác vuông có các cạnh (5;12;13):(6;8;10)

tranphuongthuy
11 tháng 2 2018 lúc 15:55

có tất cả hai tam giác vuông

Siêu Nhân Lê
Xem chi tiết
qwerty
3 tháng 10 2016 lúc 20:04

Gọi a, b, c là số đo 3 cạnh của tam giác vuông cần tìm. Giả sử 
Ta có hệ phương trình : 

Từ (1)

theo (2)]
⇔(a+b)^2−4(a+b)=c^2+4c

c = a + b − 4.
Thay vào (2) ta được: ab = 2(a + b + a + b − 4)
ab − 4a−4b + 8 = 0

 b(a −4) − 4(a−4) = 8

(a −4)(b−4) = 8

Phân tích 8 = 1.8 = 2.4 nên ta có:

hoặc 

Từ đó ta có 2 tam giác vuông có các cạnh (5;12;13):(6;8;10)

Nguyễn Thế Hoàng Sơn
10 tháng 10 2018 lúc 20:34

Gọi a, b, c là số đo 3 cạnh của tam giác vuông cần tìm. Giả sử 1≤a≤b<c1≤a≤b<c
Ta có hệ phương trình : {a2+b2=c2(1)ab=2(a+b+c)(2){a2+b2=c2(1)ab=2(a+b+c)(2)

Từ (1) c2=(a+b)2−2abc2=(a+b)2−2ab

⇔c2=(a+b)2−4(a+b+c)⇔c2=(a+b)2−4(a+b+c) (theo (2))
⇔(a+b)2−4(a+b)=c2+4c⇔(a+b)2−4(a+b)=c2+4c
(a+b−2)2=(c+2)2(a+b−2)2=(c+2)2
c = a + b − 4.
Thay vào (2) ta được: ab = 2(a + b + a + b − 4)
ab −4a−4b + 8 = 0

⇔⇔ b(a −4) −4(a−4) = 8

⇔⇔(a −4)(b−4) = 8

Phân tích 8 = 1.8 = 2.4 nên ta có:

{a=5b=12{a=5b=12 hoac {a=6b=8{a=6b=8

Từ đó ta có 2 tam giác vuông có các cạnh (5;12;13):(6;8;10)