tìm x khi x^2-2017x+2016=0
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tính giá trị của biểu thức\(M=x^{10}-2017x^9+2017x^8-......+2017x^2-2017x+2017\)
Khi x= 2016
Giá trị của biểu thức A = x^2017 - 2017x^2016 + 2017x^2015 – 2017x^2014 + ... – 2017x^2 + 2017x – 2017 tại x = 2016
Lời giải:
Tại $x=2016$ thì $x-2016=0$
Khi đó:
$A=x^{2016}(x-2016)-x^{2015}(x-2016)+x^{2014}(x-2016)-x^{2013}(x-2016)+.....-x(x-2016)+x-2017$
$=x^{2016}.0-x^{2015}.0+......-x.0+2016-2017=2016-2017=-1$
|x+1|+|x+2|+...+|x+2016|=2017x tìm x
3. tính giá trị của biểu thức:
x10 - 2017x9 + 2017x8 - ... + 2017x2 - 2017x + 2017
khi x = 2016
Dễ thầy 2017=2016+1=x+1
Thay vào ta có:
\(x^{10}-2017x^9+2017x^8-.....+2017x^2-2017x+2017\)
\(=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-....+\left(x+1\right)x^2-\left(x+1\right)x+2017\)
\(=x^{10}-x^{10}-x^9+x^9+x^8-....+x^3+x^2-x^2-x+2017=-x+2017=-2016+2017=1\)
Vậy..........
thanks bn!!
456545756858768978087
tinh x^10+2017x^9-2017x^8-2017x^7+...........+2017x^2-2017x+2017 voi x=2016
tinh x^10+2017x^9-2017x^8-2017x^7+...........+2017x^2-2017x+2017 voi x=2016
cho đa thức f(x)=x^8 - 2017x^7 +2017x^6 - 2017x^5 +...+2017x^2 - 2017x + 2018.Tính f(2016)
f(2016)=20168 - 2017*20167 +2017*20166 - 2017*20165 +...+2017*20162 - 2017*2016+ 2018
=20168 -( 20168 + 2016) + (20167+2016) - (20166 + 2016)+....+20163+2016 -( 20162 + 2016)+2018
=2018
Thay x=2016 thì 2017=x+1 và 2018=x+2 Do đó
\(f\left(x\right)=x^8-\left(x+1\right)x^7+\left(x+1\right)x^6-...-\left(x+1\right)x\)\(+x+2\)
\(=x^8-x^8-x^7+x^7+x^6-...+x^2-x^2-x+x+2\)
\(=2\)
cho f(x) = x^99 - 2017 x^98 + 2017x^97 - 2017x^96 + ..... +-2017x^2 + 2017x - 1 Tìm f ( 2016)
x=2016 nên x+1=2017
\(f\left(x\right)=x^{99}-x^{98}\left(x+1\right)+x^{97}\left(x+1\right)-...-x^2\left(x+1\right)+x\left(x+1\right)-1\)
\(=x^{99}-x^{99}-x^{98}+x^{98}+x^{97}-x^{97}+...-x^3-x^2+x^2+x-1\)
=x-1=2015
cho f(x) = x^99 - 2017 x^98 + 2017x^97 - 2017x^96 + ..... +-2017x^2 + 2017x - 1 Tìm f ( 2016)
\(f\left(x\right)=x^{99}-2017x^{98}+2017x^{97}-...+2017x-1\)
\(=x^{99}-2016x^{98}-x^{98}+2016x^{97}+...-x^2+2016x+x-2016+2015\)
\(=x^{98}\left(x-2016\right)-x^{97}\left(x-2016\right)+...-x\left(x-2016\right)+\left(x-2016\right)+2015\)
\(=\left(x^{98}-x^{97}+...-x+1\right)\left(x-2016\right)+2015\)
\(\Rightarrow f\left(2016\right)=2015\)
Vậy...