1/2+1/3+1/4+1/5+...+1/49+1/50 giai giup mik!!!
3/7:4/49
1/2-(1/3)<x<1/48-(1/16)
giup mik nhe , ai giup mik tik cho!!!!!!!!!!!!
|2x+1|+|4x+1|+|6x+1|=5
|x+1/2|+|x+1/3|+|x+1/4|=x
Giai giup mik vs😊😊
1/2×3 + 1/3×4 + 1/4×5 + ... + 1/49×50
Giải hộ mik với. Ai nhanh, đúng mik tặng 3 tick nha:))
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{49\cdot50}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-.....+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{2}-\frac{1}{50}\)
\(=\frac{24}{50}=\frac{12}{25}\)
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{49\cdot50}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{2}-\frac{1}{50}\)
\(=\frac{12}{25}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{2}-\frac{1}{50}\)
\(=\frac{25}{50}-\frac{1}{50}\)
\(=\frac{24}{50}=\frac{12}{25}\)
giai giup mik vs a \(\dfrac{1}{1+\sqrt[3]{2}+\sqrt[3]{4}}\)
\(\dfrac{1}{\sqrt[3]{4}+\sqrt[3]{2}+1}=\dfrac{\sqrt[3]{2}-1}{\left(\sqrt[3]{2}-1\right)\left(\sqrt[3]{4}+\sqrt[3]{2}+1\right)}\)
\(=\dfrac{\sqrt[3]{2}-1}{2-1}=\sqrt[3]{2}-1\)
1) Cho B= (1/2)^2+(1/2)^3+(1/2)^4+...+(1/2)^98+(1/2)^99. Chứng tỏ B<1
2) Rút gọn:
A= 1+5+5^2+5^3+...+5^49+5^50
'' giúp mik bài này vs nhak''
tính các tổng sau
A=1*2+2*3+3*4+4*5+5*6+6*7...+49*50
B=1*50+2*49+3*48+...+49*2+50*1
Rút gọn rồi tính:
A).3/5:3/4 b).2/5;3/10 c).9/8:3/4
D).1/4:1/2 e).1/8:1/6 g).1/5:1/10
Ai lam day du phep tinh cach giai mik tick.noi luon ra dap an mik ko tick
Giup di tixk 2 caik
a) 3/5:3/4=3/5x4/3=(3x4)/(5x3)=12/15=4/5
b)2/5:3/10=2/5x10/3=(2x10)/(5x3)=20/15=4/3
c)9/8:3/4=9/8x4/3=(9x4)/(8x3)=36/32=9/8
d)1/4:1/2=1/4x2=2/4=1/2
e)1/8:1/6=1/8x6=6/8=3/4
g)1/5:1/10=1/5x10=10/5=2
a) 3/5 : 3/4 = 4/5
b) 2/5 : 3/10 = 4/3
c) 9/8 : 3/4 = 3/2
d) 1/4 : 1/2 = 1/2
e) 1/8 : 1/6 = 3/4
g) 1/5 : 1/10 = 2
tk tớ nha
a)3/5:3/4=3/5x4/3=12/15=4/5
b)2/5:3/10=2/5x10/3=20/15=5/3
c)9/8:3/4=9/8x4/3=36/24=3/2
d)1/4:1/2=1/4x2=1/2
e)1/8:1/6=1/8x6=3/4
g)1/5:1/10=1/5x10=2
Tính S/P biết:
S = 1/2 + 1/3 + 1/4 + 1/5 + ... + 1/49 + 1/50
P = 1/49 + 2/48 + 3/47 + ... + 48/2 +49/1
So sánh tổng : S = 1/5 + 1/9 + 1/10 + 1/41 + 1/42 với 1/2
S=
=50/50+50/49+50/48+...+50/2
=50.(1/50+1/49+1/48+...+1/4+1/3+1/2)
=50
P=
P=(1/49+1)+(2/48+1)+...+(48/2+1)+1
P= 50/49+50/48+....+50/2+50/50=1
vậy s/p = 1/50
Chứng tỏ:
1/26+1/27+...+1/49+1/50=99/50-97/49+...+7/4-5/3+3/2-1
Xét vế phải :
\(VT=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}-1\)
\(=2.\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)
\(=2\left[\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right]\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}=VT\Rightarrow\left(đpcm\right)\)
\(\text{Nhầm xíu , cho sửa lại nhé}\)
\(\text{Xét vế phải :}\)
\(VP=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}-1\)
\(=2.\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)
\(=2\left[\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right]\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}=VT\Rightarrow\left(đpcm\right)\)
1/1*2 + 1/2*3 + 1/3*4 + 1/4*5 + ... +1/49*50
1/1*2 + 1/2*3 + 1/3*4 + 1/4*5 + ... +1/49*50
= 1 - 1/2 + 1/2- 1/3 + ... + 1/49 - 1/50
= 1 - 1/50
= 49/50
1/1*2 + 1/2*3 + 1/3*4 + 1/4*5 + ... +1/49*50
1-1/2 +1/2 -1/3+ .... +1/49 -1/50
=1-1/50
=49/50
bài này dễ như trở bàn tay í mà còn phải hỏi à