tim cap so tu nhien (a, b )thoa man :
\(3^a=3^{n+1}va8^h=2^{a+8}\)
tim cap so tu nhien a , b thoa man:
\(3^a=9^{b-1}va8^b=2^{a+8}\)
Ta có:\(3^a=9^{b-1}=3^{2b-2}\Rightarrow a=2b-2\)
\(2^{a+8}=8^b=2^{3b}\Rightarrow a+8=3b\Rightarrow a=3b-8\)
\(\Rightarrow\left(3b-8\right)-\left(2b-2\right)=b-6=0\Rightarrow b=6\)
\(\Rightarrow a=2b-2=2.6-2=10\)
so cap so tu nhien a;b thoa man a/2+b/3=a+b/5
tim so tu nhien n va chu so a thoa man 1+2+3+...+n=aaa gach dau
Từ 1 ; 2 ; .... ; n có n số hạng
=> 1 + 2 + ... + n
Mà theo bài ta có 1 + 2 + 3 + ... + n =
=> = a . 111 = a . 3 . 37
=> n . ( n + 1 ) = 2 . 3 . 37 . a
Vì tích n . ( n + 1 ) chia hết cho số nguyên tố 37 nên n hoặc n + 1 chia hết cho 37.
Vì số có 3 chữ số => n + 1 < 74 ; n = 37 hoặc n + 1 = 37.
+) với n = 37 thì không thỏa mãn
+) với n + 1 = 37 thì thõa mãn
Vậy n = 36 và a = 6. Ta có : 1 + 2 +3 + ... + 36 = 666
tim n thoa man A la so tu nhien :
\(\frac{n^3+8}{n+8}\)
bai 1 tim so tu nhien co 4 chu so ab cd biet abcd+abc+ab+a=4321.tim abcd
bai 2 cho m , n la cac so tu nhien va p la so nguyen to thoa man 9/m-1=m+n/p. tinh A= p^2-n
bai 3 tim so co 3 chu so biet abc 1000/a+b+c=abc.
Bài 1: Ký hiệu (abcd) là số tự nhiên có 4 chữ số.
(abcd) + (abc) + (ab) + (a) = 1111.a + 111.b + 11.c + d
Vậy 1111.a + 111.b + 11.c + d = 4321
+ Nếu a < 3 => 111.b + 11.c + d > 2098 (vô lý vì b, c, d < 10)
+ Nếu a > 3 => vế trái > 4321
Vậy a = 3 => 111.b + 11.c + d = 988
+ Nếu b < 8 => 11.c + d > 210 (vô lý vì c, d < 10)
+ Nếu b > 8 => vế trái > 988
Vậy b = 8 => 11.c + d = 100
+ Nếu c < 9 => d > 11 (vô lý)
Vậy c = 9; d = 1
=> (abcd) = 3891
Cho hai so tu nhien a va b thoa man 12<a<16 . So cap so thoa man đe bai la....?
tim so tu nhien a thoa man 1^3 + 2^3 + 3^3 + 4^3 + 5^3 = a^2
1^3 + 2^3 + 3^3 + 4^3 + 5^3 = a^2
=> 1^3 + 2^3 + 3^3 + 4^3 + 5^3 = a^2 = 225 = a^2
=> 225 = a5^2
=> 225 = 15 x 15 = 15^2
Vậy a = 15
cap so tu nhien a, b thoa man (2018a+3b+1)x(2018a +2018a+b)=225
Theo đề bài
\(\Rightarrow\left\{{}\begin{matrix}2008a+3b+1\\2018^a+2018a+b\end{matrix}\right.\) là hai số lẻ
Nếu \(a\ne0\Rightarrow2008^a+2018a\) là số chẵn
Để \(2008^a+2008a+b\) lẻ \(\Rightarrow b\) lẻ
Nếu \(b\) lẻ \(\Rightarrow3b+1\) chẵn
Do đó \(2008a+3b+1\) chẵn (không thỏa mãn)
\(\Rightarrow a=0\)
Với \(a=0\Rightarrow\left(3b+1\right)\left(b+1\right)=225\)
Vì \(b\in N\Rightarrow\left(3b+1\right)\left(b+1\right)=3.75=5.45=9.25\)
Do \(3b+1\) \(⋮̸\) \(3\) và \(3b+1>b+1\)
\(\Rightarrow\left\{{}\begin{matrix}3b+1=25\\b+1=9\end{matrix}\right.\)\(\Rightarrow b=8\)
Vậy: \(\left\{{}\begin{matrix}a=0\\b=8\end{matrix}\right.\)
tim cap so tu nhien X0 Y0 thoa man 92*x+1)*(x-5)=12