CMR: \(9^{34}\)-\(27^{22}\)+\(81^{16}\)chia hết cho 657
Chứng minh rằng \(9^{34}-27^{22}-81^{16}\)chia hết cho 657
Chứng minh
\(9^{34}-27^{22}+81^{16}\) Chia hết cho 657
\(9^{34}-27^{22}+81^{16}.\)
\(=\left(3^2\right)^{34}-\left(3^3\right)^{22}+\left(3^4\right)^{16}\)
\(=3^{68}-3^{66}+3^{64}\)
\(=3^{64}.\left(3^4-3^2+1\right)\)
\(=3^{64}.\left(81-9+1\right)\)
\(=3^{64}.73\)
\(=3^{62}.3^2.73\)
\(=3^{62}.9.73\)
\(=3^{62}.657\)
Vì \(657⋮657\) nên \(3^{62}.657⋮657.\)
\(\Rightarrow9^{34}-27^{22}+81^{16}⋮657\left(đpcm\right).\)
Chúc bạn học tốt!
\( {9^{34}} - {27^{22}} + {81^{16}}\\ = {\left( {{3^2}} \right)^{34}} - {\left( {{3^3}} \right)^{22}} + {\left( {{3^4}} \right)^{16}}\\ = {3^{68}} - {3^{66}} + {3^{64}}\\ = {3^{62}}\left( {{3^6} - {3^4} + {3^2}} \right)\\ = {3^{62}}\left( {729 - 81 + 9} \right)\\ = {3^{63}}.657\)
chia hết cho $657$
Chứng minh rằng: \(9^{34}-27^{22}-81^{16}\) chia hết cho 657
chứng minh
9^34 - 27^22 + 81^16 chia hết cho 657
giúp mik với
Chứng minh rằng :
\(9^{34}\)- \(27^{22}\)+ \(81^{16}\)chia hết cho 657
Ta có \(9^{34}-27^{22}+81^{16}=9^{34}-\left(3^3\right)^{22}+\left(9^2\right)^{16}\)
\(=9^{34}-3^{66}+9^{32}=9^{34}-9^{33}+9^{32}\)
\(=9^{32}\left(9^2-9+1\right)=9^{32}.73\)
\(=9^{31}.\left(8.73\right)=9^{31}.657⋮657\)
Chứng minh rằng
a, 813-243+241 chia hết cho 13
b, 934-2722+8116 chia hết cho 657
a) Sai đề.
b) \(9^{34}-27^{22}+81^{16}\)
\(=3^{68}-3^{66}+3^{64}\)
\(=3^{64}\left(3^4-3^2+1\right)=3^{64}.73=3^{62}.9.73\)
= \(3^{62}.657⋮657\)
CM 815 - 243 + 241 chi hết cho 13
934 - 2722 + 816 chia hết cho 657
a) Ta có : 815 - 243 + 241
= (23)15 - 243 + 241
= 23.15 - 243 + 241
= 245 - 243 + 241
= 241.(24 - 22 + 1)
= 241. 13 \(⋮\)13
=> 815 - 243 + 241 \(⋮\)13 (đpcm)
b) Ta có : 934 - 2722 + 816
= (32)34 - (33)22 + (34)16
= 32.34 - 33.22 + 34.16
= 368 - 366 + 364
= 364.(34 - 32 + 1)
= 362 . 32. 73
= 362 . 9 . 73
= 362 . 657 \(⋮\)657
=> 934 - 2722 + 816 \(⋮\)657 (đpcm)
CMR: a) 16^5=2^15 chia hết cho 33
b) 81^7 - 27^9 - 9^13 chia hết cho 405
\(a,16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}.\left(2^5+1\right)=2^{15}.33\) luôn chia hết cho 33 (đpcm)
\(b,81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}\)
\(=3^{26}.\left(3^2-3-1\right)=3^{26}.5=3^{22}.3^4.5=3^{22}.405\) chia hết cho 405 (đpcm)
CMR:
a) 16^3 + 2^15 chia hết cho 33
b) 81^7 - 27^9 - 9^13 chia hết cho 105