tìm \(n\) để biểu thức sau là số nguyên :P=\(\frac{3n+2}{n-1}\)
Tìm n để biểu thức sau là số nguyên :
\(A=\frac{2n+1}{n+2}-\frac{n+1}{n+2}+\frac{3n+5}{2n+4}+\frac{4n+6}{3n+6}-\frac{10n+12}{5n+10}-\frac{12n+3}{4n+8}\)
Tìm số nguyên n để biểu thức sau có giá trị nguyên A=\(\frac{3n+2}{n-1}\)
Ta có:A=\(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=3+\frac{5}{n-1}\)
Để A nguyên thì \(\frac{5}{n-1}\in Z\Rightarrow n-1\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\)
\(\Rightarrow n\in\left\{-4,0,2,6\right\}\)
Vậy............
Ta có : A= (3n+2)/(n-1)
= [3.( n-1)+5]/(n-1)
=3+[5/(n-1)]
Để A nguyên thì 5 phải chia hết cho n-1
=> n-1 thuộc ước của 5
Ta có bảng sau
x-1 | 1 | -1 | 5 | -5 |
---|---|---|---|---|
x | 2 | 0 | 6 | -4 |
Vậy x\(\in\){ -4 ; 0 ; 2 ; 6 }
Tìm n để biểu thức sau là số nguyên : P = 3n+2/n-1
Để \(P=\dfrac{3n+2}{n-1}\) là số nguyên thì:
\(3n+2⋮n-1\)
\(\Rightarrow3\left(n-1\right)+5⋮n-1\)
\(\Rightarrow5⋮n-1\)
=> \(n-1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Ta có các trường hợp sau:
\(\left[{}\begin{matrix}n-1=1\\n-1=-1\\n-1=5\\n-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=2\\n=0\\n=6\\n=-4\end{matrix}\right.\)
Vậy khi \(n\in\left\{2;0;6;-4\right\}\) thì \(P=\dfrac{3n+2}{n-2}\) là số nguyên.
Tìm n thuộc Z để biểu thức sau là số nguyên:
\(\frac{2n+3}{3n-1}\) \(-\) \(\frac{n-2}{3n-1}\)
Để 2n + 3 /3n-1 - n - 2 / 3n - 1 là số nguyên
suy ra : 2n + 3 / 3n - 1 và n - 2 / 3n - 1 là số nguyên
suy ra : 2n + 3 chia hết cho 3n - 1
suy ra : n - 2 chia hết cho 3n - 1
rồi bạn lập bảng giá trị các ước nha
CHÚC BẠN HỌC TỐT ^_^
Tìm các số nguyên n để biểu thức sau là một số nguyên tố
\(A=\frac{2n^2+3n-1}{n-1}\left(n\ne1\right)\)
tìm n để biểu thức sau là số nguyên
P=3n+2/n-1
\(P=\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{5}{n-1}=3+\frac{5}{n-1}\)
P nguyên khi \(\frac{5}{n-1}\)nguyên nghĩa là n-1 là ước của 5
Ư(5) = {-5; -1; 1; 5}
n-1 | -5 | -1 | 1 | 5 |
n | -4 | 0 | 2 | 6 |
Vậy với x E{-4; 0; 2; 6} thì P nguyên
Tìm các số nguyên n để biểu thức sau là một số nguyên tố
\(A=\frac{2n^2+3n-1}{n-1}\left(n\ne1\right)\)
mk ko giỏi mấy cái này bn ak!!!! #_#
5756876980
Tìm n để biểu thức : \(P=\frac{n+3}{n-1}+\frac{3n+5}{n-1}-\frac{2n-2}{n-1}\) là số nguyên
\(P=\frac{n+3}{n-1}+\frac{3n-5}{n-1}-\frac{2n-2}{n-1}\)
\(P=\frac{\left(n+3\right)+\left(3n+5\right)-\left(2n-2\right)}{n-1}=\frac{n+3+3n+5-2n+2}{n-1}=\frac{\left(n+3n-2n\right)+\left(3-5+2\right)}{n-1}=\frac{2n}{n-1}\)
để \(P\in Z\Leftrightarrow\frac{2n}{n-1}\in Z\)
\(\frac{2n}{n-1}=\frac{2\left(n-1\right)+2}{n-1}=2+\frac{2}{n-1}\in Z\)
=>2 chia hết cho n-1
=>..... (tự làm tiếp)
Cho biểu thức \(B=\frac{3n+2}{n-1}\)
Tìm n để B là số nguyên
Ta có : \(3n+2⋮n-1\Leftrightarrow n-1+2n+3⋮n-1\Leftrightarrow2n+3⋮n-1\Leftrightarrow n-1+n-1+5⋮n-1\Leftrightarrow5⋮n-1\)\(\Leftrightarrow n-1\inƯ\left(5\right)\Leftrightarrow n-1\in\left\{\pm1;\pm5\right\}\Leftrightarrow n\in\left\{-4;0;2;6\right\}\)