Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đức Hiếu
Xem chi tiết
Đào Thị Bạch Cúc
10 tháng 12 2016 lúc 21:21

a, xét tam giác AOD và tam giác BOD có:

OA=OB (gt)

góc AOD= góc BOD ( OD là phân giác góc O)

OD chung 

suy ra: tam giác AOD= BOD ( c.g.c)

suy ra: DA=DB (hai cạnh tương ứng)

b, vì tam giác AOD=BOD (chứng minh trên)

suy ra: góc ADO=gócBDO (2 góc tương ứng)

mà góc ADO‹+BDO=180 độ ( kề bù)

suy ra: góc ADO=góc BDO=180/2=90 độ (t/c) 

suy ra: OD vuông góc với AB tại D (t/c)

Bùi Quốc Kiệt
27 tháng 4 2020 lúc 18:44

Chúc bạn chơi game vui vẻ 🙂 và theo dõi tin tức game trên thegioigame.vn

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
27 tháng 4 2020 lúc 19:22

Không vẽ hình (:

a) Xét tam giác OAD và OAB có :

OA = OB ( gt )

^AOD = ^BOD ( do OD là phân giác của ^O )

OD chung

=> Tam giác OAD = tam giác OAB ( c.g.c )

=> DA = DB ( hai cạnh tương ứng ) ( đpcm )

b) Tam giác OAD = tam giác OBD 

=> ^ODA = ^ODB ( hai góc tương ứng ) ( 1 )

^ODA + ^ODB = 1800 ( kề bù ) ( 2 )

Từ ( 1 ) và ( 2 ) => ^ODA = ^ODB = 1800/2 = 90

=> OD vuông góc với AB ( đpcm )

Khách vãng lai đã xóa
Hà Thu Nguyễn
Xem chi tiết
Trương Hồng Hạnh
22 tháng 11 2016 lúc 21:22

Ta có hình vẽ

O A B D a/ Xét tam giác OAD và tam giác OBD có:

góc AOD = góc BOD (GT)

AD: cạnh chung

OA = OB (GT)

Vậy tam giác OAD = tam giác OBD (c.g.c)

=> DA = DB (2 cạnh tương ứng) (đpcm)

b/ Ta có: tam giác OAD = tam giác OBD (câu a)

=> góc ODA = góc ODB (2 góc tương ứng)

Mà góc ODA + góc ODB = 1800 (kề bù)

=> góc ODA = góc ODB = 1800 / 2 = 900

Vậy OD \(\perp\) AB (đpcm)

Huỳnh Phạm Quỳnh Như
Xem chi tiết
Mai Anh
3 tháng 12 2017 lúc 10:26

a, xét tam giác AOD và tam giác BOD có:

OA=OB (gt)

góc AOD= góc BOD ( OD là phân giác góc O)

OD chung 

suy ra: tam giác AOD= BOD ( c.g.c)

suy ra: DA=DB (hai cạnh tương ứng)

b, vì tam giác AOD=BOD (chứng minh trên)

suy ra: góc ADO=gócBDO (2 góc tương ứng)

mà góc ADO‹+BDO=180 độ ( kề bù)

suy ra: góc ADO=góc BDO=180/2=90 độ (t/c) 

suy ra: OD vuông góc với AB tại D (t/c)

vuphuonghuyen
8 tháng 3 2020 lúc 21:38

bài của bạn kacura giống bài bạn bạch cúc bên trên quá há 

Khách vãng lai đã xóa
Huy Vũ Quang
24 tháng 11 2021 lúc 7:29

mình cx đang ko biết câu đó :)

toàn
Xem chi tiết
Ngan tran kim ngoc
Xem chi tiết

Hình bạn tự vẽ nha!!!

a, Vì \(\Delta AOB\) có OA = OB (gt) => \(\Delta AOB\) cân tại O

Xét \(\Delta OAD\) và \(\Delta OBD\)

Có: OA = OB (gt) 

       \(\widehat{AOD}=\widehat{BOD}\) ( gt )

       OD chung

=> \(\Delta OAD=\Delta OBD\left(c.g.c\right)\)

=> DA = DB ( 2 cạnh t/ứng )

b, Xét \(\Delta HOD\) và \(\Delta KOD\)

Có: OD chung 

       \(\widehat{HOD}=\widehat{KOD}\) (gt)

      \(\widehat{DHO}=\widehat{DKO}\left(=90^0\right)\)

=> \(\Delta HOD=\Delta KOD\left(ch.gn\right)\)

=> DH = DK ( 2 cạnh t/ứng )

c, Ta có : \(\widehat{ODA}+\widehat{ODB}=\widehat{ADB}=180^0\) ( 2 góc kề bù )

Vì \(\Delta OAD=\Delta OBD\left(cmt\right)\)

=> \(\widehat{ODA}=\widehat{ODB}\) ( 2 góc t/ứng )

=> \(\widehat{ODA}=\widehat{ODB}=90^0\)

=> \(OD\perp AB\left(đpcm\right)\)

d, Vì \(\Delta ODA=\Delta ODB\left(cma\right)\)

=> AD = BD (2 cạnh t/ứng)

=> D là trung điểm AB

=> AD = BD = AB : 2 = 16 : 2 = 8 cm

Xét \(\Delta ODA\) vuông:

=> OD2 + AD2 = OA2 ( đ/lí Pytago )

Thay số: OD2 + 82 = 202

OD2 = 202 - 82

OD2 = 336

=> OD = \(\sqrt{336}\) cm

Vậy...

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 4 2018 lúc 8:18

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Xét ΔAOD và ΔBOD, ta có:

OA = OB (gt)

∠(AOD) = ∠(BOD)(vì OD là tia phân giác)

OD cạnh chung

Suy ra: ΔAOD= ΔBOD(c.g.c)

Vậy: DA = DB (hai cạnh tương ứng)

Sách Giáo Khoa
Xem chi tiết
Thu Trang
11 tháng 6 2017 lúc 15:30

a) Xét \(\Delta AOD \)\(\Delta BOD \) có:

\(\widehat{O_1}=\widehat{O_2}\) (gt)

OD là cạnh chung

OA = OB (gt)

Vậy \(\Delta AOD = \Delta BOD\) (c.g.c)

=> DA = DB (2 cạnh tương ứng)

b) Vì \(\Delta AOD = \Delta BOD\) nên \(\widehat{ADO}=\widehat{BDO}\) (2 góc tương ứng) (1)

Ta có: \(\widehat{AOD}\) kề bù với \(\widehat{BOD}\) nên \(\widehat{AOD}+\widehat{BOD}=180^0\) (2)

Từ (1) (2) suy ra: \(\widehat{AOD}=\widehat{BOD}=\dfrac{180^0}{2}=90^0\)

=> OD \(\perp\) AB tại D.

Nguyen Thuy Hoa
7 tháng 7 2017 lúc 10:26

Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh (c.g.c)

Nguyễn Bảo Trâm
11 tháng 11 2019 lúc 20:48

a) Xét ΔAOD∆AODΔBOD∆BOD, ta có:

OA=OBOA=OB (gt)

ˆAOD=ˆBODAOD^=BOD^ (vì ODOD là tia phân giác góc OO)

ODOD cạnh chung

⇒ΔAOD=ΔBOD⇒∆AOD=∆BOD (c.g.c)

⇒DA=DB⇒DA=DB (hai cạnh tương ứng)

b) ΔAOD=ΔBOD∆AOD=∆BOD (chứng minh trên)

⇒ˆD1=ˆD2⇒D1^=D2^ (hai góc tương ứng)

Ta có: ˆD1+ˆD2=180∘D1^+D2^=180∘ (hai góc kề bù)

⇒ˆD1=ˆD2=90∘⇒D1^=D2^=90∘

Vậy OD⊥ABOD⊥AB.

Khách vãng lai đã xóa
Nguyễn Phương Linh
Xem chi tiết
Bảo Ngọc cute
Xem chi tiết
Trương Hồng Hạnh
30 tháng 11 2016 lúc 22:00

Ta có hình vẽ:

O A B D Xét tam giác OAD và tam giác OBD có:

OA = OB (GT)

\(\widehat{AOD}\)=\(\widehat{BOD}\) (GT)

OD: cạnh chung

=> tam giác OAD = tam giác OBD (c.g.c)

=> \(\widehat{ODA}\)=\(\widehat{ODB}\) (2 góc tương ứng)

\(\widehat{ODA}\)+\(\widehat{ODB}\) = 1800 (kề bù)

=> \(\widehat{ODA}\)=\(\widehat{ODB}\) = 900

Vậy OD \(\perp\)AB (đpcm)

Aki Tsuki
30 tháng 11 2016 lúc 22:24

Ta có hình vẽ sau:

 

 

 


1 2 A O B D

Xét ΔOAD và ΔOBD có:

OD là cạnh chung

\(\widehat{O_1}=\widehat{O_2}\) (gt)

OA = OB (gt)

=> ΔOAD = ΔOBD (c-g-c)

=> \(\widehat{ADO}=\widehat{BDO}\) (2 góc tương ứng)

\(\widehat{ADO}+\widehat{BDO}=180^o\) (2 góc kề bù)

=> \(\widehat{ADO}=\widehat{BDO}\) = \(\frac{180^o}{2}\) = 90o

=> OD \(\perp\) AB (đpcm)

Trần Nguyễn Bảo Quyên
6 tháng 12 2016 lúc 10:32

 

 

Xét \(\Delta OAD\)\(\Delta OBD\) có :

\(OA=OB\left(gt\right)\)

\(\widehat{AOD}=\widehat{BOD}\left(gt\right)\)

\(OD\) : cạnh chung

Do đó : \(\Delta OAD=\Delta OBD\left(c-g-c\right)\)

\(\Rightarrow\widehat{ODA}=\widehat{ODB}\) ( hai góc tương ứng )

\(\widehat{ODA}+\widehat{ODB}=180^0\) ( hai góc kề bù )

\(\Rightarrow\widehat{ODA}=\widehat{ODB}=\frac{180^0}{2}=90^0\)

Vậy : \(OD\perp AB\left(đpcm\right)\)