Hình học lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bảo Ngọc cute

Cho tam giác AOB có OA=OB. Tia phân giác góc O cắt AB tại D

CM OD vuông góc với AB

Trương Hồng Hạnh
30 tháng 11 2016 lúc 22:00

Ta có hình vẽ:

O A B D Xét tam giác OAD và tam giác OBD có:

OA = OB (GT)

\(\widehat{AOD}\)=\(\widehat{BOD}\) (GT)

OD: cạnh chung

=> tam giác OAD = tam giác OBD (c.g.c)

=> \(\widehat{ODA}\)=\(\widehat{ODB}\) (2 góc tương ứng)

\(\widehat{ODA}\)+\(\widehat{ODB}\) = 1800 (kề bù)

=> \(\widehat{ODA}\)=\(\widehat{ODB}\) = 900

Vậy OD \(\perp\)AB (đpcm)

Aki Tsuki
30 tháng 11 2016 lúc 22:24

Ta có hình vẽ sau:

 

 

 


1 2 A O B D

Xét ΔOAD và ΔOBD có:

OD là cạnh chung

\(\widehat{O_1}=\widehat{O_2}\) (gt)

OA = OB (gt)

=> ΔOAD = ΔOBD (c-g-c)

=> \(\widehat{ADO}=\widehat{BDO}\) (2 góc tương ứng)

\(\widehat{ADO}+\widehat{BDO}=180^o\) (2 góc kề bù)

=> \(\widehat{ADO}=\widehat{BDO}\) = \(\frac{180^o}{2}\) = 90o

=> OD \(\perp\) AB (đpcm)

Trần Nguyễn Bảo Quyên
6 tháng 12 2016 lúc 10:32

 

 

Xét \(\Delta OAD\)\(\Delta OBD\) có :

\(OA=OB\left(gt\right)\)

\(\widehat{AOD}=\widehat{BOD}\left(gt\right)\)

\(OD\) : cạnh chung

Do đó : \(\Delta OAD=\Delta OBD\left(c-g-c\right)\)

\(\Rightarrow\widehat{ODA}=\widehat{ODB}\) ( hai góc tương ứng )

\(\widehat{ODA}+\widehat{ODB}=180^0\) ( hai góc kề bù )

\(\Rightarrow\widehat{ODA}=\widehat{ODB}=\frac{180^0}{2}=90^0\)

Vậy : \(OD\perp AB\left(đpcm\right)\)


Các câu hỏi tương tự
Hà Thu Nguyễn
Xem chi tiết
Nguyễn Hải Băng
Xem chi tiết
Nguyen Ngoc Lien
Xem chi tiết
Lê Huyền Linh
Xem chi tiết
Tiểu Thư Kiêu Kì
Xem chi tiết
Trần Ngọc An Như
Xem chi tiết
Miko
Xem chi tiết
sakura
Xem chi tiết
Phương Thảo
Xem chi tiết