Ta có hình vẽ:
Xét tam giác OAD và tam giác OBD có:
OA = OB (GT)
\(\widehat{AOD}\)=\(\widehat{BOD}\) (GT)
OD: cạnh chung
=> tam giác OAD = tam giác OBD (c.g.c)
=> \(\widehat{ODA}\)=\(\widehat{ODB}\) (2 góc tương ứng)
Mà \(\widehat{ODA}\)+\(\widehat{ODB}\) = 1800 (kề bù)
=> \(\widehat{ODA}\)=\(\widehat{ODB}\) = 900
Vậy OD \(\perp\)AB (đpcm)
Ta có hình vẽ sau:
Xét ΔOAD và ΔOBD có:
OD là cạnh chung
\(\widehat{O_1}=\widehat{O_2}\) (gt)
OA = OB (gt)
=> ΔOAD = ΔOBD (c-g-c)
=> \(\widehat{ADO}=\widehat{BDO}\) (2 góc tương ứng)
mà \(\widehat{ADO}+\widehat{BDO}=180^o\) (2 góc kề bù)
=> \(\widehat{ADO}=\widehat{BDO}\) = \(\frac{180^o}{2}\) = 90o
=> OD \(\perp\) AB (đpcm)
Xét \(\Delta OAD\) và \(\Delta OBD\) có :
\(OA=OB\left(gt\right)\)
\(\widehat{AOD}=\widehat{BOD}\left(gt\right)\)
\(OD\) : cạnh chung
Do đó : \(\Delta OAD=\Delta OBD\left(c-g-c\right)\)
\(\Rightarrow\widehat{ODA}=\widehat{ODB}\) ( hai góc tương ứng )
Mà \(\widehat{ODA}+\widehat{ODB}=180^0\) ( hai góc kề bù )
\(\Rightarrow\widehat{ODA}=\widehat{ODB}=\frac{180^0}{2}=90^0\)
Vậy : \(OD\perp AB\left(đpcm\right)\)