Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
iiiiiiiiiiiiiiiiiiiiiiii...
Xem chi tiết
Nguyen tien dung
Xem chi tiết
Trịnh Thu Phương
Xem chi tiết
Sakura
30 tháng 12 2015 lúc 10:37

 p là số nguyên tố lớn hơn 3 nên p lẻ p không có dạng : 

6k + 2 , 6k + 4 , 6k ( chia hết cho 2) 

Hơn nữa, p cũng không chia hết cho 3 p không có dạng: 

6k + 3 ( chia hết cho 3) 

Vậy p chỉ có dạng 6k+1 hoặc 6k+5

Phúc Nguyên Bạch
30 tháng 12 2015 lúc 10:42

Mọi số tự nhien lớn hơn 3 khi chia hết cho 6 có 1 trong các số dư :0,1,2,3,4,5,

TH1:p chia 6 dư 0 suy ra :p=6k là hợp số(loại)

TH2:p chia 6 dư 1 suy ra p=6k+1

TH3:p chia 6 dư 2 suy ra p =6k+2 là hợp số (loại)

TH4;p chia 6 dư 3 suy ra p=6k+3 là hợp số (loại_)

TH5:p chia 6 dư 4 suy ra p=6k+4 là hợp số (loại)

TH6:p chia 6 dư 5 suy ra p=6k+5

Vậy p có dạng 6k+1 hoặc 6k+5

 

Ruby Linh Chi
Xem chi tiết
Aries
Xem chi tiết
Nguyễn quỳnh Anh
Xem chi tiết
Nguyễn Thị Hồng Nhung
12 tháng 12 2014 lúc 17:17

Mình biết làm câu a nhưng không chắc chắn lắm đâu : Mình xét các trường hợp số dư từ 1 đến 5

p:6 dư 1=>p=6k+1 (thỏa mãn)

p:6 dư 2=>p=6k+2 mà 6k+2 chia hết cho 2(loại)

p:6 dư 3=>p=6k+3

            =>p chia hết cho 3

            =>p=6k+3 (loại)

p:6 dư 4=>p=6k+4

            =>p chia hết cho 2

            =>p=6k+4 (loại)

p:6 dư 5=>p=6k+5(thỏa mãn)

Vậy các số nguyên tố lớn hơn 3 luôn có dạng 6k+1 hoặc 6k+5

 

Demon0987
Xem chi tiết
THI MIEU NGUYEN
Xem chi tiết
Lê Minh Vũ
24 tháng 9 2021 lúc 9:05

\(a)\)Mọi số tự nhiên lớn hơn \(3\)khi chia cho 6 chỉ có thể xảy ra một trong \(6\)trường hợp: dư \(0\), dư \(2\), dư \(3\), dư \(4\), dư \(5\)

+) Nếu p chia \(6\)dư \(0\)thì \(p=6k\Rightarrow p\)là hơp số

+) Nếu p chia cho \(6\)\(1\) thì \(p=6k+1\)

+) Nếu p chia cho \(6\)\(2\) thì \(p=6k+2\Rightarrow p\)là hợp số.

+) Nếu p chia cho \(6\)\(3\) thì\(p=6k+3\Rightarrow p\) là hợp số.

+) Nếu p chia cho \(6\)\(4\) thì \(p=6k+4\Rightarrow p\) là hợp số.

+) Nếu p chia cho \(6\)\(5\) thì \(p=6k+5\)

Vậy mọi số nguyên tố lớn hơn \(3\) chia cho \(6\) thì chỉ có thể dư \(1\) hoặc dư \(5\) tức là :

\(p=6k+1\) hoặc \(p=6k+5\)

b) Nếu p có dạng \(6k+1\) thì \(8p+1=8\left(6k+1\right)+1=48k+9⋮3\) ; số này là hợp số.

Vậy p không có dạng \(6k+1\) mà p có dạng \(6k+5\), khi đó \(4p+1=4\left(6k+5\right)+1=24k+21⋮3\) . Rõ ràng \(4p+1\)là hợp số.

Khách vãng lai đã xóa
Lê Hồng Ngọc
Xem chi tiết