Cho P là số nguyên tố lớn hơn 3 CMR: P có dạng 6k + 1 hoặc 6k + 5
cho P là số nguyên tố lớn hơn 3
a) CMR: P có dạng 6k + 1 hoặc 6k + 5
b) biết 8P + 1 cùng là số nguyên tố. CMR : 4P + 1 là hợp số
Cho p là số nguyên tố lớn hơn 3
a) CTR p có dạng 6k+1 hoặc 6k+5
b) Biết 8p+1 cũng là nguyên tố , CMR 4p+1 là hơp số
Cho p là số nguyên tố lớn hơn 3. Chứng minh rằng p có dạng 6k+1 hoặc 6k+5.
p là số nguyên tố lớn hơn 3 nên p lẻ p không có dạng :
6k + 2 , 6k + 4 , 6k ( chia hết cho 2)
Hơn nữa, p cũng không chia hết cho 3 p không có dạng:
6k + 3 ( chia hết cho 3)
Vậy p chỉ có dạng 6k+1 hoặc 6k+5
Mọi số tự nhien lớn hơn 3 khi chia hết cho 6 có 1 trong các số dư :0,1,2,3,4,5,
TH1:p chia 6 dư 0 suy ra :p=6k là hợp số(loại)
TH2:p chia 6 dư 1 suy ra p=6k+1
TH3:p chia 6 dư 2 suy ra p =6k+2 là hợp số (loại)
TH4;p chia 6 dư 3 suy ra p=6k+3 là hợp số (loại_)
TH5:p chia 6 dư 4 suy ra p=6k+4 là hợp số (loại)
TH6:p chia 6 dư 5 suy ra p=6k+5
Vậy p có dạng 6k+1 hoặc 6k+5
tìm số nguyên tố p để p + 10 và p + 20 là số nguyên tố
bài 2
a, chứng minh số nguyên tố lớn hơn 2 thì có dạng 4k + 1 hoặc 4k + 3
b,số nguyên tố lớn hớn 3 thì có dạng 6k + 1 hoặc 6k + 5
Cho p là số nguyên tố lớn hơn 3
a) chứng tỏ rằng p có dạng 6k + 1 hoặc 6k + 5
b) 8 p + 1 là số nguyên tố. Chứng minh 4p+ 1 là hợp số
Cho p là số nguyên tố lớn hơn 3.
a) Chứng tỏ rằng p có dạng 6k +1 hoặc 6k + 5
b) Biết 8p + 1 đều là số nguyên tố ( p > 3 ). Hỏi p + 100 là số nguyên tố hay hợp số
Mình biết làm câu a nhưng không chắc chắn lắm đâu : Mình xét các trường hợp số dư từ 1 đến 5
p:6 dư 1=>p=6k+1 (thỏa mãn)
p:6 dư 2=>p=6k+2 mà 6k+2 chia hết cho 2(loại)
p:6 dư 3=>p=6k+3
=>p chia hết cho 3
=>p=6k+3 (loại)
p:6 dư 4=>p=6k+4
=>p chia hết cho 2
=>p=6k+4 (loại)
p:6 dư 5=>p=6k+5(thỏa mãn)
Vậy các số nguyên tố lớn hơn 3 luôn có dạng 6k+1 hoặc 6k+5
Cho p là số nguyên tố lớn hơn 3
A, c/tỏ p có dạng 6k+1 hoặc 6k+5
B, cho p và 8p-1 là số nguyên tố c/ tỏ 8p+1 là hợp số
Cho p là số nguyên tố lớn hơn 3.
a) Chứng tỏ rằng p có dạng 6k + 1 hoặc 6k + 5
b) Biết 8p + 1cũng là số nguyên tố, chứng minh rằng 4p + 1 là hợp số.
\(a)\)Mọi số tự nhiên lớn hơn \(3\)khi chia cho 6 chỉ có thể xảy ra một trong \(6\)trường hợp: dư \(0\), dư \(2\), dư \(3\), dư \(4\), dư \(5\)
+) Nếu p chia \(6\)dư \(0\)thì \(p=6k\Rightarrow p\)là hơp số
+) Nếu p chia cho \(6\) dư \(1\) thì \(p=6k+1\)
+) Nếu p chia cho \(6\) dư \(2\) thì \(p=6k+2\Rightarrow p\)là hợp số.
+) Nếu p chia cho \(6\) dư \(3\) thì\(p=6k+3\Rightarrow p\) là hợp số.
+) Nếu p chia cho \(6\) dư \(4\) thì \(p=6k+4\Rightarrow p\) là hợp số.
+) Nếu p chia cho \(6\) dư\(5\) thì \(p=6k+5\)
Vậy mọi số nguyên tố lớn hơn \(3\) chia cho \(6\) thì chỉ có thể dư \(1\) hoặc dư \(5\) tức là :
\(p=6k+1\) hoặc \(p=6k+5\)
b) Nếu p có dạng \(6k+1\) thì \(8p+1=8\left(6k+1\right)+1=48k+9⋮3\) ; số này là hợp số.
Vậy p không có dạng \(6k+1\) mà p có dạng \(6k+5\), khi đó \(4p+1=4\left(6k+5\right)+1=24k+21⋮3\) . Rõ ràng \(4p+1\)là hợp số.
Cho p là số nguyên tố lớn hơn 3
a) Chứng tỏ rằng p có dạng 6k+1 hoặc 6k+5
b) Biết 8p+1 cũng là 1 số nguyên tố. Chứng minh rằng 4p+1 là hợp số