Chứng minh rằng : |a|-|b| bé thua hoặc bằng |a-b|
1 cho a+b=2 chứng minh rằng ab bé thua hoặc bằng 1
VÌ X A+B=2 =>A=2-B
TA CÓ: AB=(2-B)B
=2B-B^2
=-B^2+2B-1+1
= -(B-1)^2+1
VÌ (B-1)^2 > =0 => -(B-1)^2 < = (VỚI MỌI Y)
=>-(B-1)^2+1< = 1(VỚI MỌI Y)
VẬY AB < = 1
MK KO BIẾT LÀ NÓ CÓ ĐÚNG HAY KO
MONG BẠN THÔNG CẢM
Cho x+y=2
Chứng minh rằng xy bé thua hoặc bằng 1
x+y=2
<=> x=2-y(1)
giả sử x*y≤1
<=>(2-y)y≤1
<=>y^2 - 2y +1≥0
<=> (y-1)^2≥0
<=>y≥1(2)
từ (1),(2)=> x*y≤1
Đúng nha !
cho a,b>0.chứng minh rằng: căn a + căn b bé hơn hoặc bằng b/ căn a cộng a/ căn b
Với a;b > 0 ta có:
\(\sqrt{a}+\sqrt{b}\le\dfrac{b}{\sqrt{a}}+\dfrac{a}{\sqrt{b}}\\ \Leftrightarrow\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\le\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}\\ \Leftrightarrow a\sqrt{b}+b\sqrt{a}\le a\sqrt{a}+b\sqrt{b}\\ \Leftrightarrow a\sqrt{a}+b\sqrt{b}-a\sqrt{b}-b\sqrt{a}\ge0\\ \Leftrightarrow a\left(\sqrt{a}-\sqrt{b}\right)-b\left(\sqrt{a}-\sqrt{b}\right)\ge0\\ \Leftrightarrow\left(a-b\right)\left(\sqrt{a}-\sqrt{b}\right)\ge0\\ \Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{a}+\sqrt{b}\right)\ge0\)
Bất đẳng thức cuối cùng luôn đúng vì: \(\left\{{}\begin{matrix}\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\\\sqrt{a}+\sqrt{b}>0\left(a;b>0\right)\end{matrix}\right.\)
Vậy bất đẳng thức được chứng minh với a;b >0
Cho a,b,c thỏa mãn a+b+c=0. Chứng minh rằng ab+bc+ca bé hơn hoặc bằng 0
Đề : ab + 4bc + ca \(\le\)0
Có : a + b + c = 0 => a = - b - c
Thay vào ab + 4bc + ca \(\le\)0 ta đc:
(-b - c).b + 4bc + c.(-b - c) \(\le\) 0
=> -b2 - bc + 4bc - bc - c2 \(\le\)0
=> -b2 - c2 + 2bc \(\le\)0
=> - (b2 - 2bc + c2) \(\le\) 0
=> -(b - c)2 \(\le\) 0 (luôn đúng)
Vậy ab + 4bc + ca \(\le\) 0
Cho a, b, c thỏa mãn: a+b+c=0. Chứng minh rằng: ab+bc+ca bé hơn hoặc bằng 0
Cho a,b thỏa -1bé hơn hoặc bằng a,b bé hơn hoặc bằng 2 và a+b=3
chứng minh rằng 3a2+b2+3ab-27/4 lớn hơn hoặc bằng 0
1 a) Chứng minh( x^2+y^2+5)/2 bé hơn hoặc bằng x+2y
b) Cho a, b biết : a+b=1. Chứng minh 1/a+1 + 1/b+1 bé hơn hoặc bằng 4/3
\(a)\)
\(\frac{x^2+y^2+5}{2}\ge x+2y\)
\(\rightarrow\frac{x^2+y^2+5}{2}-x-2y\ge0\)
\(\rightarrow\frac{x^2+y^2-2x-4y+5}{2}\ge0\)
\(\rightarrow\frac{\left(x^2-2x+1\right)+\left(y^2-4y+4\right)}{2}\ge0\)
\(\rightarrow\frac{\left(x-1\right)^2+\left(y-2\right)^2}{2}\ge0\)
\(\rightarrow\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y-2\right)^2\ge0\end{cases}}\)
\(\rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)
\(\rightarrow\frac{\left(x-1\right)^2+\left(y-2\right)^2}{2}\ge0\)
b)
Áp dụng bất đẳng thức dạng 1/a + 1/b + 4 / a+b
-> 1/a+1 + 1/b+1 ≥ 4/a+b+1+1
Mà ta có: a+b=1
-> 1/a+1 + 1/b+1 ≥ 4/1+1+1 = 4/3
cho a+b+c=0
chứng minh rằng axb+axc+cxa bé hơn hoặc bằng 0
Cho a, b, c thỏa mãn: 0 nhỏ thua hoặc bằng a nhỏ thu hoặc bằng b nhỏ thu hoặc bằng c. Chứng minh:
a) a/b +b/c+c/a lớn hơn hoạc bằng b/a+c/b+a/c
b) c/a+b/c lớn hơn hoặc băng b/a+a/b