Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phúc Crazy
Xem chi tiết
tuandung2912
2 tháng 4 2023 lúc 21:34

1+1=3 :)))

duong minh duc
Xem chi tiết
Legona Ace
13 tháng 1 2018 lúc 13:21

\(B=3+\frac{3}{1+2}+\frac{3}{1+2+3}+\frac{3}{1+2+3+4}+....+\frac{3}{1+2+3+...+100}\)

\(B=3+3\left(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+..+100}\right)\)

Xét thừa số tổng quát: \(\frac{1}{1+2+3+...+n}=\frac{1}{\left[\left(n-1\right):1+1\right]:2.\left(n+1\right)}=\frac{1}{\frac{n\left(n+1\right)}{2}}\)

Ta có: \(B=3+3\left(\frac{1}{\frac{2\left(2+1\right)}{2}}+\frac{1}{\frac{3\left(3+1\right)}{2}}+\frac{1}{\frac{4\left(4+1\right)}{2}}+...+\frac{1}{\frac{100\left(100+1\right)}{2}}\right)\)

\(B=3+3\left[2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\right)\right]\)

\(B=3+6\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(B=3+6\left(\frac{1}{2}-\frac{1}{101}\right)\)

Khánh Huyền Dương Nữ
Xem chi tiết
Nguyễn Trịnh Nam Phương
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
3 tháng 7 2017 lúc 9:54

Đăt A = \(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+......+\frac{1}{7^{100}}\)

\(\Rightarrow7A=1+\frac{1}{7}+\frac{1}{7^2}+.....+\frac{1}{7^{100}}\)

\(\Rightarrow7A-A=1-\frac{1}{7^{100}}\)

\(\Rightarrow6A=1-\frac{1}{7^{100}}\)

\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{6}\)

Bui Dinh Quang
Xem chi tiết
Phùng Minh Quân
9 tháng 4 2018 lúc 17:48

\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) ta có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}=\frac{99}{100}< 1\)

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

‍
Xem chi tiết
Anh Thư Nguyễn
Xem chi tiết
Anh Thư Nguyễn
8 tháng 8 2020 lúc 22:03

Giúp mình nha. Bài cuối cùng của đề toán dài 36 bài của mình đó

Khách vãng lai đã xóa
FL.Hermit
8 tháng 8 2020 lúc 22:22

\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)

Nên từ đây => \(A< 1\)     (ĐPCM)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
8 tháng 8 2020 lúc 22:22

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

Ta có : \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)

\(\frac{1}{4^2}=\frac{1}{4\cdot4}< \frac{1}{3\cdot4}\)

...

\(\frac{1}{100^2}=\frac{1}{100\cdot100}< \frac{1}{99\cdot100}\)

Cộng vế theo vế

=> \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

=> \(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

=> \(A< \frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)(1)

Lại có \(\frac{99}{100}< 1\)(2)

Từ (1) và (2) => \(A< \frac{99}{100}< 1\Rightarrow A< 1\left(đpcm\right)\)

Khách vãng lai đã xóa
Linh nguyen phan khanh
Xem chi tiết
Nguyễn Thị Nguyên
7 tháng 5 2016 lúc 8:00

Câu hỏi của Monkey D. Luffy - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath

em tham khảo câu hỏi của Sáng Nguyễn nhé 

Phạm Tuấn Kiệt
7 tháng 5 2016 lúc 8:05

Mình mới làm bài này hôm qua này:

Câu hỏi của Lê Thế Dũng - Học và thi online với HOC24

Anh Dao Tuan
Xem chi tiết