Tìm STN n để phân số
6n+99/3n+4
a,có giá trị là STN
b,Là phân số tối giản
Bài 3: Tìm số tự nhiên n để phân số \(\dfrac{6n+99}{3n+4}\)
a) có giá trị là số tự nhiên
b) là phân số tối giản
a: Để A là số tự nhiên thì
6n+8+91 chia hết cho 3n+4
mà n>=0
nên \(3n+4\in\left\{7;13;91\right\}\)
=>n=1 hoặc n=3
b: Để A là phân số tối giản thì 3n+4 ko là ước của 91
=>3n+4<>7k và 3n+4<>13a
=>n<>(7k-4)/3 và n<>(13a-4)/3(k,a là các số tự nhiên)
tìm số tn n để phân số
6n + 99 phần 3n + 4
a) có giá trị là số tn
b) là phân số tối giản
tìm số tự nhiên n để phân số 6n+99 /3n+4.
a) có giá trị là số tự nhiên
b) là phân số tối giản
Tìm số tự nhiên n để 6n+99 phần 3n+4
a) Có giá trị là số tự nhiên
b) Là phân số tối giản
\(\frac{6n+99}{3x+4}=\frac{6n+8+91}{3n+4}=2+\frac{91}{3n+4}\)
bạn tự làm nốt nha
ai k mình k lại cho
Tìm số tự nhiên n để phân số 6n+99 phần 3n+4
1,Có giá trị là số tự nhiên
2,Là phân số tối giản
Tìm số tự nhiên n để phân số :6n+99/3n+4 :
a)Có giá trị là số tự nhiên
b)là phân số tối giản
Ai nhanh mk tick cho
Tìm số tự hiên để phân số 6n+99 / 3n+4
a) Có giá trị là số tự nhiên
b) Là phân số tối giản
Đặt \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)+91}{3n+4}=\frac{2\left(3n+4\right)}{3n+4}=\frac{91}{3n+4}=2+\frac{91}{3n+4}\)
a ) Để A là số tự nhiên thì \(91⋮3n+4⋮3n+4\)là ước của \(91\)hay \(3n+4\in\left\{1;7;13;91\right\}\)
Với \(3n+4=1n=-1\) loại vì n là số tự nhiên .
Với \(3n+4=7n=1\) nhận \(A=2+13=15\)
Với \(3n+4=13n=3\) nhận \(A=2+7=9\)
Với \(3n+4=91n=29\) nhận \(A=2+1=3\)
b ) Để A là phân số tối giản thì \(91\)không chia hết \(3n+4\) hay \(3n+4\) không là ước của \(91\).
\(\Rightarrow3n+4\)không chia hết cho ước nguyên tố của \(91\) . Vậy suy ra :
\(3n+4\)không chia hết cho 7 \(\Rightarrow n\ne7k+1\)
\(3n+4\)không chia hết cho 13 \(\Rightarrow n\ne13m+3\)
nước mưa : 丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶
Cho phân số n+5/n-2(n thuộc N; N>3)
a,Tìm n để phân số có giá trị là STN
b, Tìm n để phân số là phân số tối giản
Tìm số tự nhiên n để phân số \(\frac{6n+99}{3n+4}\)
a) Có giá trị là số tù nhiên
b) Là phân số tối giản
Giúp mk vs
Đặt \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)+91}{3n+4}=\frac{2\left(3n+4\right)}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)
a) Để A là số tù nhiên thì \(91⋮3n+4⋮3n+4\) là ước của 91 hay \(3n+4\in\left\{1;7;13;91\right\}\).
Với \(3n+4=1\) \(n=-1\) loại vì n là số tù nhiên
Với \(3n+4=7\) \(n=1\) nhận \(A=2+13=15\)
Với \(3n+4=13\) \(n=3\) nhận \(A=2+7=9\)
Với \(3n+4=91\) \(n=29\) nhận \(A=2+1=3\)
b) Để A là phân số tối giản thì 91 không chia hết \(3n+4\) hay \(3n+4\) không là ước của 91.
\(\Rightarrow3n+4\) không chia hết cho ước nguyên tố của 91. Vậy suy ra:
\(3n+4\) không chia hết cho 7 \(\Rightarrow n\ne7k+1\)
\(3n+4\) không chia hết cho 13 \(\Rightarrow n\ne13m+3\)
a) Đặt \(A=\frac{6n+99}{3n+4}\)
Ta có: \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2.\left(3n+4\right)+91}{3n+4}=\frac{2.\left(3n+4\right)}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)
Để A là tự nhiên thì \(\frac{91}{3n+4}\) là số tự nhiên
\(\Rightarrow3n+4\inƯ\left(91\right)\)
Mà 3n + 4 chia 3 dư 1 và \(3n+4\ge4\) do n ϵ N
\(\Rightarrow3n+4\in\left\{7;13;91\right\}\)
\(\Rightarrow3n\in\left\{3;9;87\right\}\)
\(\Rightarrow n\in\left\{1;3;29\right\}\)
Vậy \(n\in\left\{1;3;29\right\}\) thỏa mãn đề bài
b) Gọi d là ước nguyên tố chung của 6n + 99 và 3n + 4
\(\Rightarrow\begin{cases}6n+99⋮d\\3n+4⋮d\end{cases}\)\(\Rightarrow\begin{cases}6n+99⋮d\\6n+8⋮d\end{cases}\)\(\Rightarrow\left(6n+99\right)-\left(6n+8\right)⋮d\)
\(\Rightarrow91⋮d\)
Mà d nguyên tố \(\Rightarrow d\in\left\{7;13\right\}\)
+ Với d = 7 thì \(\begin{cases}6n+99⋮7\\3n+4⋮7\end{cases}\)\(\Rightarrow\begin{cases}6n+99-105⋮7\\3n+4-7⋮7\end{cases}\)\(\Rightarrow\begin{cases}6n-6⋮7\\3n-3⋮7\end{cases}\)
\(\Rightarrow\begin{cases}6.\left(n-1\right)⋮7\\3.\left(n-1\right)⋮7\end{cases}\). Mà (6;7)=1; (3;7)=1 \(\Rightarrow n-1⋮7\)
\(\Rightarrow n=7.a+1\left(a\in N\right)\)
Tương tự với trường hợp d = 13 ta tìm được \(n=13.b+3\left(b\in N\right)\)
Vậy với \(n\ne7.a+1\left(a\in N\right)\) và \(n\ne13.b+3\left(b\in N\right)\) thì \(\frac{6n+99}{3n+4}\) là phân số tối giản