Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Anh
Xem chi tiết
Nguyễn Thảo Vân
Xem chi tiết
Nguyễn Thảo Vân
29 tháng 8 2023 lúc 19:23

giúp mình với !!!!!!!!!!!!!!!!!!!!!!!!

Nguyễn Đức Trí
29 tháng 8 2023 lúc 19:25

Câu b, bài b1 chứng minh \(a=2^{2006}-1?\)

Vũ Văn Thành
Xem chi tiết
Soccer Kunkun
14 tháng 3 2017 lúc 17:25

=>B=\(\dfrac{1}{4.4}+\dfrac{1}{6.6}+\dfrac{1}{8.8}+...+\dfrac{1}{2006.2006}\)

=>B<\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{2005.2007}\)

=>B<\(\dfrac{2}{2}.\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{2005.2007}\right)\)

=>B<\(\dfrac{1}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{2005.2007}\right)\)

=>B<\(\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2005}-\dfrac{1}{2007}\right)\)

=>B<\(\dfrac{1}{2}.\left(\dfrac{1}{3}+\dfrac{1}{5}-\dfrac{1}{5}+...+\dfrac{1}{2005}-\dfrac{1}{2005}-\dfrac{1}{200}\right)\)(xin lỗi, đoạn cuối (chỗ 200 í )là 2007 nhá

=>B<\(\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{2007}\right)\)

=>B<\(\dfrac{1}{2}.\dfrac{668}{2007}\)

=>B<\(\dfrac{1.668}{2.2007}\)

=>B<\(\dfrac{1.668:2}{2.2007:2}\)

=>B<\(\dfrac{334}{2007}\)

Tick cho tôi nha :D

Vũ Thị Vân Anh
Xem chi tiết
tran ha phuong
Xem chi tiết
☆MĭηɦღAηɦ❄
2 tháng 3 2020 lúc 10:55

Ta thấy : \(\frac{1}{4^2}< \frac{1}{4.5};\frac{1}{6^2}< \frac{1}{5.6};...;\frac{1}{2006^2}< \frac{1}{2005.2006}\)

\(\Rightarrow B=\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{2006^2}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{2005.2006}\)

\(\Leftrightarrow B< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(\Leftrightarrow B< \frac{1}{4}-\frac{1}{2006}=\frac{1001}{4012}\)

Mà \(\frac{1001}{4012}< \frac{334}{2007}\Rightarrow B< \frac{334}{2007}\)

Khách vãng lai đã xóa
LeThiHaiAnh✔
2 tháng 3 2020 lúc 10:57

\(B< \frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2006.2008}\)

\(2B< \frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2006.2008}=\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2006}-\frac{1}{2008}=\frac{1}{4}-\frac{1}{2008}=\frac{501}{2008}\)\(B< \frac{501}{4016}< \frac{501}{4014}< \frac{668}{4014}=\frac{334}{2007}\)

Vậy:.....

Khách vãng lai đã xóa
LeThiHaiAnh✔
2 tháng 3 2020 lúc 10:59

1/6^2 < 1/5.6?????????

Khách vãng lai đã xóa
Nguyễn Thị Thủy
Xem chi tiết
Nguyên nha hieu
Xem chi tiết
Bùi Hương Giang
Xem chi tiết
Mai
25 tháng 2 2016 lúc 13:20

mik sẽ trả lời pạn sau nhé ..sorry mik pạn ti......

love karry wang
13 tháng 3 2017 lúc 22:27

Mai ơi! bạn khùng hả? ko trả lời thì thôi lại còn vào chỗ trả lời để sorry

Cẩm Đinh
Xem chi tiết
Nguyễn Phương Uyên
24 tháng 6 2018 lúc 9:18

a,\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(A=\left(1+\frac{1}{3}+...+\frac{1}{2005}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2006}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)

\(=B\left(ĐPCM\right)\)

b, \(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2006}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1003}\right)\)

\(A=\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\)

Nguyễn Phương Uyên
24 tháng 6 2018 lúc 9:19

ui ghi lộn, chữ đpcm chuyển xuống dòng cuối cùng nhé :v