so sánh \(\sqrt{99}+\sqrt{101}\) và 20
Không dùng máy tính hãy so sánh P với 20
\(P=\sqrt{102-2\sqrt{101}}+\sqrt{103+2\sqrt{101}}\)
\(P=\sqrt{101-2\sqrt{101}+1}+\sqrt{101+2\sqrt{101}+1+1}\)
\(=\sqrt{\left(\sqrt{101}-1\right)^2}+\sqrt{\left(\sqrt{101}+1\right)^2+1}>\sqrt{101}-1+\sqrt{101}+1=2\sqrt{101}>2.\sqrt{100}=2.10=20\)
=> P > 20
So sánh:
\(\sqrt{105}-\sqrt{101}\) và \(\sqrt{101}-\sqrt{97}\)
So sánh P với 20
\(P=\sqrt{102-2\sqrt{101}}+\sqrt{103+2\sqrt{101}}=\sqrt{\left(\sqrt{101}-1\right)^2}+\sqrt{\left(\sqrt{101}+1\right)^2+1}\)
\(=\sqrt{101}-1+\sqrt{101}+1\)
các bạn giai thich jum minh chỗ \(\sqrt{\left(\sqrt{101}+1\right)^2+1}\)
sao lai = \(\sqrt{101}+1\)
đc nhỉ ??????
so sánh\(\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}\)và 20
So sÁNH các số sau không dùng máy tính
a) \(\sqrt{7}+\sqrt{15}và7\)
b)\(\sqrt{2}+\sqrt{11}và\sqrt{3}+5\)
c) \(\sqrt{21}-\sqrt{5}và\sqrt{20}-\sqrt{6}\)
d)\(\sqrt{17}+\sqrt{21}+1và\sqrt{99}\)
a: \(\left(\sqrt{7}+\sqrt{15}\right)^2=22+2\sqrt{105}=7+15+2\sqrt{105}\)
\(7^2=49=7+42\)
mà \(15+2\sqrt{105}< 42\)
nên \(\sqrt{7}+\sqrt{15}< 7\)
b: \(\left(\sqrt{2}+\sqrt{11}\right)^2=13+2\sqrt{22}\)
\(\left(5+\sqrt{3}\right)^2=28+10\sqrt{3}=13+15+10\sqrt{3}\)
mà \(2\sqrt{22}< 15+10\sqrt{3}\)
nên \(\sqrt{2}+\sqrt{11}< 5+\sqrt{3}\)
So sánh: \(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{100}+\sqrt{101}}\) với \(B=\frac{181}{20}\)
Ta có : \(\frac{1}{\sqrt{k}+\sqrt{k+1}}=2\left(\sqrt{k+1}-\sqrt{k}\right)\)
Áp dụng : A = 2\(\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{101}-\sqrt{100}\right)\)= \(2\left(\sqrt{101}-1\right)\) \(\ge\) \(2\left(\sqrt{100}-1\right)=2\left(10-1\right)=2\times9=18\)
B = \(\frac{181}{20}=9,05\) < 18 nên suy ra : A>B
So sánh \(\sqrt{3+\sqrt{20}}\) và \(\sqrt{5+\sqrt{5}}\)
so sánh : a) \(\sqrt{2}+\sqrt{11}\) và \(\sqrt{3}+5\)
b) \(\sqrt{21}-\sqrt{5}\) và \(\sqrt{20}-\sqrt{6}\)
\(a,\left(\sqrt{2}+\sqrt{11}\right)^2=12+2\sqrt{22}\\ \left(\sqrt{3}+5\right)^2=28+10\sqrt{3}\)
Ta thấy \(12< 28;2\sqrt{22}=\sqrt{88}< \sqrt{300}=10\sqrt{3}\)
Nên \(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)
\(b,\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\\ \left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)
Vì \(\sqrt{105}< \sqrt{120}\Rightarrow-2\sqrt{105}>-2\sqrt{120}\)
Nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
So sánh:\(\sqrt{17}+\sqrt{26}+1\)và \(\sqrt{99}\)
Ta có:
\(\sqrt{99}< \sqrt{100}=10\)
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=10\)
Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
ʇɐɥʇ ɥuɐɹ uɐq ɔɐɔ ɐl ƃunp ıɥʇ ʎɐp uǝp ɔonp ɔop uɐq ɔɐɔ ɐl ʇǝıq ɥuıɯ ƃunɥu 'ɔonp ɔop ıoɯ ıɐl ɔonƃu ʎɐox ıɐɥd ɐʌ ɔop oɥʞ ɐl ʇɐɹ ıɥʇ ʎɐu ǝɥʇ ʇǝıʌ ɐl ʇǝıq ɥuıɯ