Những câu hỏi liên quan
Trương Tuệ Nga
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Đặng Ngọc Quỳnh
23 tháng 5 2021 lúc 18:52

Ta có:

sigma \(\frac{ab}{3a+4b+5c}=\) sigma \(\frac{2ab}{5\left(a+b+2c\right)+\left(a+3b\right)}\le\frac{2}{36}\left(sigma\frac{5ab}{a+b+2c}+sigma\frac{ab}{a+3b}\right)\)

Ta đi chứng minh: \(sigma\frac{ab}{a+b+2c}\le\frac{9}{4}\)

có: \(sigma\frac{ab}{a+b+2c}\le\frac{1}{4}\left(sigma\frac{ab}{c+a}+sigma\frac{ab}{b+c}\right)=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)

BĐT trên đúng nếu: \(sigma\frac{ab}{a+3b}\le\frac{9}{4}\)

Ta thấy: \(sigma\frac{ab}{a+3b}\le\frac{1}{16}\left(sigma\frac{ab}{a}+sigma\frac{3ab}{b}\right)=\frac{1}{16}\)( sigma \(b+sigma3a\)\(=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)

\(\Leftrightarrow sigma\frac{ab}{3a+4b+5c}\le\frac{1}{18}\left(5.\frac{9}{4}+\frac{9}{4}\right)=\frac{3}{4}\)(1)

MÀ: \(\frac{1}{\sqrt{ab\left(a+2c\right)\left(b+2c\right)}}=\frac{2}{2\sqrt{\left(ab+2bc\right)\left(ab+2ca\right)}}\ge\frac{2}{2\left(ab+bc+ca\right)}\)

\(=\frac{3}{3\left(ab+bc+ca\right)}\ge\frac{3}{\left(a+b+c\right)^2}=\frac{3}{9^2}=\frac{1}{27}\)(2)

Từ (1) và (2) \(\Rightarrow T\le\frac{3}{4}-\frac{1}{27}=\frac{77}{108}\)

Vậy GTLN của biểu thức T là 77/108 <=> a=b=c=3

Bình luận (0)
 Khách vãng lai đã xóa
Ngoc An Pham
Xem chi tiết
Nguyễn Thị Ngọc Thơ
29 tháng 5 2019 lúc 22:35

Cảm thấy bài của ''chị Anh'' có gì đó không ổn :D

#Fix

ĐK:\(\left\{{}\begin{matrix}ab+b+c\ne0\\ac+c+a\ne0\\bc+b+c\ne0\end{matrix}\right.\)

Áp dụng BĐT Cauchy-Schwarz dạng phân thức, ta có:

\(ab.\frac{1}{ab+a+b}\le ab.\frac{1}{9}\left(\frac{1}{ab}+\frac{1}{a}+\frac{1}{b}\right)\)\(=\frac{1}{9}+\frac{a}{9}+\frac{b}{9}\)

Tương tự: \(\frac{2ac}{ac+c+a}\le\frac{2}{9}+\frac{2a}{9}+\frac{2c}{9}\),\(\frac{3bc}{bc+b+c}\le\frac{3}{9}+\frac{3b}{9}+\frac{3c}{9}\)

Cộng vế theo vế, ta có;

\(\frac{ab}{ab+a+b}+\frac{2ac}{ac+c+a}+\frac{3bc}{bc+b+c}\le\frac{2}{3}+\frac{3a+4b+5c}{9}\)\(=\frac{2}{3}+\frac{12}{9}=2\)

\(''=''\Leftrightarrow a=b=c=1\)

Bình luận (0)
Nguyen
3 tháng 2 2019 lúc 17:40

ĐK: \(\left\{{}\begin{matrix}ab+a+b\ne0\\ac+a+c\ne0\\bc+b+c\ne0\end{matrix}\right.\)

Áp dụng BĐT Cô-si:

\(a+b\ge2ab\);\(a+c\ge2ac\);\(b+c\ge2bc\)

\(\Rightarrow A=\dfrac{ab}{ab+a+b}+\dfrac{3bc}{bc+b+c}+\dfrac{2ca}{ca+c+a}\)\(\le\dfrac{ab}{3ab}+\dfrac{2ac}{3ac}+\dfrac{3bc}{3bc}\)\(=\dfrac{1}{3}+\dfrac{2}{3}+1=2\)

Vậy Amax=2\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)\(\Rightarrow a=b=c\)và \(a,b,c\ne0\)

Thay vào 3a+4b+5c=12, ta có:

12a=12\(\Leftrightarrow a=b=c=1\)

Bình luận (1)
Đào Thị Hồng Ngọc
Xem chi tiết
zZz Cool Kid_new zZz
6 tháng 8 2020 lúc 19:53

Ta đi chứng minh: \(\frac{5b^3-a^3}{ab+3b^3}\le2b-a\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)

Một cách tương tự:\(\frac{5c^3-b^3}{bc+3c^3}\le2c-b;\frac{5a^3-c^3}{ca+3a^2}\le2a-c\)

Cộng lại thì:

\(LHS\le a+b+c=3\)

Đẳng thức xảy ra tại a=b=c=1

Bình luận (0)
 Khách vãng lai đã xóa
Nhi Yến
Xem chi tiết
vuthithu2002
Xem chi tiết
Đức Lộc
Xem chi tiết
Agatsuma Zenitsu
29 tháng 1 2020 lúc 0:15

Ta có: \(ab+bc+ca=abc\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Đặt: \(A=\frac{a}{bc\left(a+1\right)}+\frac{b}{ca\left(b+1\right)}+\frac{c}{ab\left(c+1\right)}\)

\(\Rightarrow A=\frac{\frac{1}{b}.\frac{1}{c}}{1+\frac{1}{a}}+\frac{\frac{1}{c}.\frac{1}{a}}{1+\frac{1}{b}}+\frac{\frac{1}{b}.\frac{1}{a}}{1+\frac{1}{c}}\)

Đặt: \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow x+y+z=1\)

\(A=\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\)

Ta có: \(\frac{xy}{z+1}=\frac{xy}{\left(z+x\right)+\left(z+y\right)}\le\frac{1}{4}\left(\frac{xy}{x+z}+\frac{xy}{y+z}\right)\)

Chứng minh tương tự ta được:

\(\frac{yz}{x+1}\le\frac{yz}{x+y}+\frac{yz}{x+z}\)

\(\frac{zx}{y+1}\le\frac{zx}{x+y}+\frac{zx}{y+z}\)

Cộng vế với vế:

\(\Rightarrow A\le\frac{1}{4}\left(x+y+z\right)=\frac{1}{4}\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
Hồ Thị Mai Linh
Xem chi tiết
Vũ Thảo Vy
Xem chi tiết
Incursion_03
23 tháng 12 2018 lúc 8:18

Ad bđt : \(xy+yz+zx\le x^2+y^2+z^2\) (Cái bđt này c/m dễ : Nhân 2 vế với 2 -> chuyển vế -> tổng bình phương > 0 luôn đúng)

Kết hợp với bđt Cô-si cho 2 số dương ta đc

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\left(\frac{a^3}{b}+ab\right)+\left(\frac{b^3}{c}+bc\right)+\left(\frac{c^3}{a}+ac\right)-\left(ab+bc+ca\right)\)

                                   \(\ge2\sqrt{\frac{a^3}{b}.ab}+2\sqrt{\frac{b^3}{c}.bc}+2\sqrt{\frac{c^3}{a}.ac}-\left(a^2+b^2+c^2\right)\)

                                       \(=2a^2+2b^2+2c^2-a^2-b^2-c^2\)

                                        \(=a^2+b^2+c^2\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\left(1\right)\)

Áp dụng bđt Cô-si cho 2 số dương

\(a^2+b^2\ge2ab\)

\(b^2+c^2\ge2bc\)

\(c^2+a^2\ge2ac\)

\(a^2+1\ge2a\)

\(b^2+1\ge2b\)

\(c^2+1\ge2c\)

Cộng từng vế của 6 bđt trên lại ta đc

\(3\left(a^2+b^2+c^2+1\right)\ge2\left(ab+bc+ca+a+b+c\right)\)

 \(\Leftrightarrow3\left(a^2+b^2+c^2+1\right)\ge2.6\)

\(\Leftrightarrow a^2+b^2+c^2+1\ge4\)

\(\Leftrightarrow a^2+b^2+c^2\ge3\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\ge3\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b=c\\a+b+c+ab+bc+ca=6\end{cases}}\)

                         \(\Leftrightarrow\hept{\begin{cases}a=b=c\\a+a+a+aa+aa+aa=6\end{cases}}\)(thay hết b , c thành a)

                         \(\Leftrightarrow\hept{\begin{cases}a=b=c\\3a^2+3a=6\end{cases}}\)

                        \(\Leftrightarrow\hept{\begin{cases}a=b=c\\a^2+a-2=0\end{cases}}\)

                         \(\Leftrightarrow\hept{\begin{cases}a=b=c\\\left(a-1\right)\left(a+2\right)=0\end{cases}}\)

                          \(\Leftrightarrow a=b=c=1\)hoặc \(a=b=c=-2\)

Mà a,b,c là các số dương nên a = b = c  = 1

Vậy ............

Bình luận (0)