Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đan Linh
Xem chi tiết
chuche
10 tháng 4 2022 lúc 20:26

tham khảo:

 <=> 2x^2+3y^2+4x -19 =0

<=> 2.(x2 + 2x +1) + 3.y2 = 21

<=> 2.(x+1)2 + 3. y2 = 21

Vì 3y2; 21 đều chia hết cho 3 nên 2.(x +1)2 chia hết cho 3 . hơn nữa 2. (x +1)2 ≤≤≤ 21 và (x+1)2 là số chính phương

=> (x+1)2 =0 hoặc  9 

+) x + 1 = 0 => x = -1 => y 2 = 7 => loại

+) (x+1)= 9 => y= 1

=> x+ 1 = 3 hoặc x+ 1=- 3 => x = 2 hoặc x = -4

y2 = 1 => y = 1 hoặc y = -1

Vậy....

lê thanh tùng
Xem chi tiết
hoàng thị huyền trang
Xem chi tiết
Trần Lệ Quyên
Xem chi tiết
Trần Thị Loan
22 tháng 7 2015 lúc 10:46

<=> 2.(x2 + 2x +1) + 3.y2 = 21

<=> 2.(x+1)2 + 3. y2 = 21

Vì 3y2; 21 đều chia hết cho 3 nên 2.(x +1)2 chia hết cho 3 . hơn nữa 2. (x +1)2 \(\le\) 21 và (x+1)2 là số chính phương

=> (x+1)2 =0 hoặc  9 

+) x + 1 = 0 => x = -1 => y 2 = 7 => loại

+) (x+1)= 9 => y= 1

=> x+ 1 = 3 hoặc x+ 1=- 3 => x = 2 hoặc x = -4

y2 = 1 => y = 1 hoặc y = -1

Vậy....

Trịnh Xuân Minh
Xem chi tiết
Thắng Nguyễn
10 tháng 2 2016 lúc 21:14

\(\Leftrightarrow3y^2+2x^2+4x=19\)

\(\Rightarrow3y^2+2x^2+4x-19=0\)

\(\Rightarrow\frac{\sqrt{3}y-\sqrt{-2x^2-4x+19}}{\sqrt{3}}=0\)

\(\Rightarrow3y=\sqrt{-2x^2-4x+19}\)

=> Nghiệm đc xác định dưới dạng hàm ẩn

\(y=+-\frac{\sqrt{-2x^2-4x+19}}{\sqrt{3}}\)

Thắng Nguyễn
10 tháng 2 2016 lúc 21:13

\(\Leftrightarrow3y^2+2x^2+4x=19\)

\(\Rightarrow3y^2+2x^2+4x-19=0\)

\(\Rightarrow\frac{\sqrt{3}y-\sqrt{-2x^2-4x+19}}{\sqrt{3}}=0\)

\(\Rightarrow3y=\sqrt{-2x^2-4x+19}\)

=> Nghiệm đc xác định dưới dạng hàm ẩn

\(y=+-\frac{\sqrt{-2x^2-4x+19}}{\sqrt{3}}\)

Thắng Nguyễn
10 tháng 2 2016 lúc 21:26

http://olm.vn/?g=page.display.showtrack&id=424601&limit=0

bn xem cái này rồi tìm Vào lúc: 2016-02-10 21:14:07

mình trả lời rồi nhưng OLM chưa duyệt

Hoàng Yến
Xem chi tiết
giang ho dai ca
21 tháng 5 2015 lúc 19:05

\(\Leftrightarrow4x^2+8x+4=42-6y^2\)

\(\Rightarrow\left(2x+2\right)^2=6\left(7-y^2\right)\)

Vì \(\left(2x+2\right)^2\ge0\)  \(\Rightarrow7-y^2\ge0\)\(\Rightarrow y^2\le7\)

Mà \(y\in Z\)  \(\Rightarrow y=0\); +-1 ; +-2 \(\Rightarrow\) các gt tương ứng của x

đúng nha

bài này cũng dễ

Nguyễn Ngô Minh Trí
3 tháng 11 2017 lúc 17:18

cảm ơn bạn đã giúp 

thanks

k tui nha

Cao Phạm Thùy Linh
15 tháng 11 2017 lúc 21:15

cách giải hay, tks bạn!!

Khôi 2k9
Xem chi tiết
Nguyễn Linh Chi
27 tháng 10 2020 lúc 9:02

\(2x^2+3y^2+4x=19\)

<=> \(2\left(x^2+2x+1\right)+3y^2=21\)

<=> \(2\left(x+1\right)^2+3y^2=21\)

<=> \(2\left(x+1\right)^2=21-3y^2\ge0\)

=> \(y^2\le7\)(1) 

Mặt khác \(2\left(x+1\right)^2=21-3y^2⋮2\)

=> 21 - 3y^2 là số chẵn  => 3y^2 là số lẻ => y^2 là số chính phương lẻ  (2) 

Từ (1) và (2) => y = 1 hoặc y = - 1=> y^2 = 1 

=> 2 (x + 1)^2 = 18 <=> (x + 1 ) = 9 <=> x + 1 = 3 hoặc x + 1 = - 3 <=> x = 2 hoặc x = -4

Vậy phương trình có 4 nghiệm ( 2; 1) (2; -1); (-4; 1 ); (-4; -1)

Khách vãng lai đã xóa
chau duong phat tien
Xem chi tiết
Mai Anh
9 tháng 12 2017 lúc 18:25

 <=> 2x^2+3y^2+4x -19 =0

<=> 2.(x2 + 2x +1) + 3.y2 = 21

<=> 2.(x+1)2 + 3. y2 = 21

Vì 3y2; 21 đều chia hết cho 3 nên 2.(x +1)2 chia hết cho 3 . hơn nữa 2. (x +1)2  21 và (x+1)2 là số chính phương

=> (x+1)2 =0 hoặc  9 

+) x + 1 = 0 => x = -1 => y 2 = 7 => loại

+) (x+1)= 9 => y= 1

=> x+ 1 = 3 hoặc x+ 1=- 3 => x = 2 hoặc x = -4

y2 = 1 => y = 1 hoặc y = -1

Vậy....

Phạm khánh Linh
Xem chi tiết
Phước Nguyễn
12 tháng 2 2016 lúc 13:58

Ta có:  \(2x^2+3y^2+4x=19\)

\(\Leftrightarrow\)  \(2x^2+4x=19-3y^2\)

\(\Leftrightarrow\)  \(2x^2+4x+2=21-3y^2\)

\(\Leftrightarrow\)  \(2\left(x+1\right)^2=3\left(7-y^2\right)\)   \(\left(\text{*}\right)\)

Vì  \(2\left(x+1\right)^2\)  chia hết cho  \(2\)  nên  \(3\left(7-y^2\right)\)  chia hết cho \(2\), hay  \(7-y^2\)  chia hết cho  \(2\) , hay  \(y^2\)  lẻ  \(\left(1\right)\)

Lại có:   \(7-y^2\ge0\) (do  \(\left(x+1\right)^2\ge0\)) nên \(y^2\le7\) (với  \(y\in Z\) ), tức là  \(y^2\in\left\{1;4\right\}\)  \(\left(2\right)\)

Từ  \(\left(1\right);\left(2\right)\) , suy ra  \(y^2=1\)  \(\Rightarrow\)  \(y\in\left\{-1;1\right\}\)

Khi đó, phương trình  \(\left(\text{*}\right)\)  sẽ có dạng  \(2\left(x+1\right)^2=18\)

                                                         \(\Leftrightarrow\)  \(\left(x+1\right)^2=9\)

                                                         \(\Leftrightarrow\)   \(^{x+1=3}_{x+1=-3}\)  \(\Leftrightarrow\)  \(^{x=2}_{x=-4}\)

Vậy,  các cặp nghiệm nguyên phải tìm: \(\left(x;y\right)=\left\{\left(2;1\right),\left(2;-1\right),\left(-4;1\right),\left(-4;-1\right)\right\}\)  (thỏa mãn  \(x,y\in Z\) )

OoO Kún Chảnh OoO
12 tháng 2 2016 lúc 13:36

 <=> 2x^2+3y^2+4x -19 =0

<=> 2.(x2 + 2x +1) + 3.y2 = 21

<=> 2.(x+1)2 + 3. y2 = 21

Vì 3y2; 21 đều chia hết cho 3 nên 2.(x +1)2 chia hết cho 3 . hơn nữa 2. (x +1)2 $\le$≤ 21 và (x+1)2 là số chính phương

=> (x+1)2 =0 hoặc  9 

+) x + 1 = 0 => x = -1 => y 2 = 7 => loại

+) (x+1)= 9 => y= 1

=> x+ 1 = 3 hoặc x+ 1=- 3 => x = 2 hoặc x = -4

y2 = 1 => y = 1 hoặc y = -1

Vậy....

Minh Hiếu
Xem chi tiết
Lê Anh Vũ
8 tháng 8 2022 lúc 7:10