Cho tứ giác ABCD và các điểm M, N lần lượt thuộc các đoạn thẳng AB và CD sao cho các tứ giác AMND, BMNC là các tứ giác nội tiếp. Chứng minh \(\widehat A + \widehat B = 180^\circ .\)
Cho hình vuông $ABCD$ cạnh $a$. Trên hai cạnh $AD$ và $CD$ lần lượt lấy các điểm $M$ và $N$ sao cho $\widehat{MBN}={45}^\circ$. $BM$ và $BN$ cắt $AC$ theo thứ tự tại $E$ và $F$.
a) Chứng minh $BNNC$ và $BFMA$ là các tứ giác nội tiếp.
b) Chứng minh $MEFN$ là tứ giác nội tiếp.
c) Gọi $H$ là giao điểm của $MF$ và $NE$, $I$ là giao điểm của $BH$ và $MN$. Tính độ dài đoạn $BI$ theo a.
Vì: FBM=FAM=45 độ nên BFMA là tứ giác nội tiếp
tương tự có đpcm
b, ta có:
MFN=DAB=90
NEM=BCD=90
=> nội tiếp
c, theo câu b ta có:
MNB=BEC=BNC nên: NB là phân giác góc INC
thấy ngay H là trực tâm tam giác BMN nên: BI vuông góc MN
do đó áp dụng tính chất đường phân giác ta được BI=BC=a.
Chứng minh góc EBN = góc ECN = 450
=> Tứ giác BENC nội tiếp (đpcm)
Cho hình bình hành ABCD. Trên các cạnh AB và CD lần lượt lấy các điểm M và N sao cho AM = DN. Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E và F. a) Chứng minh tứ giác AMND là hình bình hành. b) Chứng minh rằng tứ giác MEBF là hình thoi. c) Hình bình hành ABCD phải có thêm điều kiện gì để tứ giác BCNE là hình thang cân.
.a.
Vì `EF` là đường trung trực MB.
=> `EM=EB`
=> `ΔEMB` cân tại E
=> \(\widehat{EMB}=\widehat{EBM}\)
Chứng minh tương tự được: \(\widehat{FMB}=\widehat{FBM}\)
Vì `AM=DN` mà AM//DN
=> Tứ giác `AMND` là hình bình hành.
b.
Từ câu (a) suy ra:
ME//BF
BE//FM
=> Hình bình hành MEBF có `EF⊥MB`
=> Tứ giác MEBF là hình thoi
Cho tứ giác ABCD. Trên các cạnh AB, CD lấy lần lượt các điểm M, N tùy ý. Gọi P, Q lần lượt là trọng tâm các tứ giác AMND và BMNC. Đẳng thức nào sau đây đúng?
A. P Q → = A B → + D C →
B. P Q → = 1 2 A B → + D C →
C. P Q → = 1 4 A B → + D C →
D. P Q → = 1 4 A B → - D C →
Gọi E, F lần lượt là trung điểm của AM, MB; G, H lần lượt là trung điểm của DN, NC.
Ta có P,Q lần lượt là trung điểm của EG, FH. Khi đó
Đáp án C
Cho hình thang cân ABCD (BC//AD), hai đường chéo AC, BD cắt nhau tại điểm O sao cho \widehat{BOC} = 60 độ. Gọi M,N,P,Q lần lượt là trung điểm của các đoạn thẳng BC,OA,AB,CD.a) Chứng minh tứ giác DMNC nội tiếp đượcb) Chứng minh tam giác MNQ là tam giác đềuc) So sánh các góc \widehat{MQP}, \widehat{QND}, \widehat{NMC} d) Chứng minh trực tâm của tam giác MNQ thẳng hàng với O, I
Cho hình thang cân ABCD (BC//AD), hai đường chéo AC, BD cắt nhau tại điểm O sao cho \widehat{BOC} = 60 độ. Gọi M,N,P,Q lần lượt là trung điểm của các đoạn thẳng BC,OA,AB,CD.a) Chứng minh tứ giác DMNC nội tiếp đượcb) Chứng minh tam giác MNQ là tam giác đềuc) So sánh các góc \widehat{MQP}, \widehat{QND}, \widehat{NMC} d) Chứng minh trực tâm của tam giác MNQ thẳng hàng với O, I
Cho hình vuông ABCD , các điểm M, N thay đổi lần lượt nằm trên các cạnh BC, CD sao cho \(\widehat{MAN}=45^0\)(M,. N không trùng với các đỉnh của hình vuông). Gọi P, Q lần lượt là giao điểm của AM, AN với BD.
1) Chứng minh rằng: Tứ giác ABMQ là tứ giác nội tiếp.
2) Chứng minh rằng: Tỉ số diện tích của APQ và tam giác ANM không đổi
Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của các canh AB, BC, CD, DA.
a) Chứng minh tứ giác MNPQ là hình bình hành.
b) Khi AC = BD thì tứ giác MNPQ là hình gì? Vì sao?
c) Để MNPQ là hình chữ nhật thì 2 đường chéo AC và BD có thêm điều kiện gì? Vì sao?
d) Khi tứ giác ABCD có \(\widehat{A}+\widehat{B}=180^o\). Chứng minh AD + BC = 2MP.
LÀM ƠN GIÚP MÌNH VỚI, LÀM ĐƯỢC CÂU NÀO THÌ LÀM, ĐỪNG BƠ MÌNH NHA !!!!!!!!!
1, Cho hình thang cân ABCD (AB //, AB < CD). Gọi M, N, P, Q lần lượt là trung điểm các đoạn thẳng AD, BD, AC, BC .
a, Chứng minh 4 điểm M, N, P, Q thẳng hàng .
b, Chứng minh tứ giác ABPN là hình thang cân.
c, Tìm một hệ thức liên hệ giữa AB và CD để ABPN là hình chữ nhật
2, Cho tam giác ABC. Gọi O là một điểm thuộc miền trong của tam giác M, N, P, Q lần lượt là trung điểm của các đoạn thẳng OB, OC, AC, AB .
a, Chứng minh tứ giác MNPQ là hình bình hành.
b, Xác định vị trí của điểm O Để tứ giác MNPQ là hình chữ nhật
3, Cho tam giác ABC Vuông cân tại C. Trên các cạnh AC , BC lấy lần lượt các điểm P, Q sao cho AP = CQ. Từ điểm B vẽ PM // BC ( M thuộc AB) Chứng minh tứ giác PCQM là hình chữ nhật
M.N VẼ HÌNH GIÚP LUÔN NHÉ. THANKS NHIỀU Ạ
Bài khá dài đó.
Sorry nhé mik mới lớp 6 ak nên ko bít, tha lỗi nha!
ý kiến gì thì nhắn tin cho mik mai 7g
pp, ngủ ngon!
Bạn Nữ hoàng Elsa lửa bn k biết thì đừng trả lời nhé
làm j phải căng bn với nhau mà chơi cho hòa đồng và đừng có chảnh nhé
Cho tứ giác ABCD có \(\widehat{B}=110^o;\widehat{C}=120^o;\widehat{D}=60^o\)
a) Tính góc A
b) Chứng minh tứ giác ABCD là hình thang
c) Gọi M,N lần lượt là trung điểm của AB và CD. Biết BC=8cm,AD=12cm. Tính độ dài đoạn thẳng MN
Cho hình thang cân ABCD (AB//CD) và \(\widehat{D}\) = 45 độ. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA.
a) Tính diện tích các tứ giác ABCD, MNPQ nếu AB = 2cm, CD = 6cm.
b) Tính tỉ số diện tích các tứ giác ABCD, MNPQ nếu các dữ liệu về góc D, cạnh AB, CD không nhất thiết phải như đề cho trên.
Cho tứ giác lồi ABCD. Điểm P nằm trong tứ giác ABCD sao cho \(\widehat{PAD}:\widehat{PBA}:\widehat{DPA}=1:2:3=\widehat{CBP}:\widehat{BAP}:\widehat{BPC}\). Chứng minh các phân giác trong của các góc ADP và PCB và đường trung trực của đoạn AB đồng quy tại một điểm.
Gọi P và Q lần lượt là trung điểm của AC' và CA'.
CC' giao MN tại I
Xét tam giác AC'C. P là trung điểm AC', M là trung điểm của AC
=> PM là đường trung bình tam giác AC'C => PM//CC'
hay C'I//PM
C' là trọng tâm tam giác ABD => C'N=AN/3.(T/c trọng tâm)
Mà P là trung điểm AC' => C' là trung điểm PN.
Xét tam giác PNM: C' là trung điểm PN, C'I//PM => I là trung điểm của MN
=> CC' đi qua trung điểm của MN (1)
Tương tự ta chứng minh được AA' đi qua trung điểm MN (2)
Tương tự xét trong tam giác DMB: BB' và DD' cùng đi qua trung điểm I của MN (3)
Từ (1),(2) và (3) => AA';BB';CC';DD',MN đồng quy (đpcm).
Bạn dựa theo dạng này
Vậy B nằm trên đường trung trực của đoạn thẳngAC (1)
Tương tự ta có AD=CD (gt)
Vậy D nằm trên đường trung trực của AC (2)
Từ (1) và (2) ta suy ra BD là đường trung trực của AC (đpcm)
b,ΔABD=ΔCBD(c.c.c)⇒ˆBAD=ˆBCDΔABD=ΔCBD(c.c.c)⇒BAD^=BCD^
Ta lại có :
ˆBAD+ˆBCD=3600−ˆB−ˆDBAD^+BCD^=3600−B^−D^
=3600−1000−700=1900=3600−1000−700=1900
do đó :ˆA=ˆC=1900:2=950
A=950
HT
@Trọng