Cho tam giác ABC vuông tại A. Gọi O là trung điểm của BC (hình 7). Đường tròn (O; OB) có phải là đường tròn ngoại tiếp tam giác ABC hay không?
Cho tam giác ABC vuông tại A. Gọi P, Q, K lần lượt là trung điểm của ba cạnh AB, AC, BC. Gọi O là giao điểm của ba đường phân giác của tam giác ABC. Khỉ đó tâm đường tròn ngoại tiếp tam giác ABC là:
A. O.
B. P.
C. Q.
D. R.
Cho tam giác ABC vuông tại A. Gọi D, E, F lần lượt trung điểm của AB, AC và BC. Gọi O là giao điểm của ba đường phân giác trong tam giác ABC. Khi đó, tâm đường tròn ngoại tiếp tam giác ABC là:
A. O
B. D
C. E
D. F
+ Vì O là giao điểm của ba đường phân giác trong tam giác ABC nên O là tâm của đường tròn nội tiếp tam giác ABC nên đáp án A sai.
+ Tam giác ABC vuông tại A có F là trung điểm của BC nên AF là đường trung tuyến ứng với cạnh huyền
Do đó: AF = 1 2 BC (trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)
Suy ra AF = FC = FB
Nên F cách đều ba đỉnh A, B, C
Do đó F là tâm đường tròn ngoại tiếp tam giác ABC.
+ Vì D ≠ E ≠ F và chỉ có một đường tròn ngoại tiếp tam giác ABC nên đáp án B, C sai và D đúng.
Chọn đáp án D
Cho tam giác ABC vuông tại A . Đường tròn (O) đường kính AB cắt BC tại H . Tia phân giác của góc HAC cắt DC tại E và cắt đường tròn (O) tại B .
a) Chứng minh: AH\(\perp BC\)
b) Gọi M là trung điểm của AB . Chứng minh HM là tiếp tuyến của đường tròn tâm O
c) Chứng minh: DA. DE=DC\(^2\)
a: Xét (O) có
ΔAHB nội tiếp
AB là đường kính
Do đó: ΔAHB vuông tại H
hay AH⊥BC
b: Sửa đề: M là trung điểm của AC
Ta có: ΔAHC vuông tại H
mà HM là đường trung tuyến
nên HM=AM=AC/2
Xét ΔMAO và ΔMHO có
MA=MH
MO chung
OA=OH
Do đó: ΔMAO=ΔMHO
Suy ra: \(\widehat{MAO}=\widehat{MHO}=90^0\)
hay HM là tiếp tuyến của (O)
Cho tam giác ABC vuông tại A và AB < AC. Từ A, kẻ AH vuông góc với cạnh BC tại H. Trên đoạn thẳng HC lấy điểm D sao cho H là trung điểm của đoạn thẳng BD. Gọi O là trung điểm của đoạn thẳng CD, vẽ đường tròn tâm O đường kính CD. Đường tròn (O) vừa vẽ có điểm chung thứ hai với cạnh AC là E. Chứng minh HA = HE và tính số đo của góc OEH.
Giúp mình với mình đang cần gấp lắm ạ
Bài 6. (2,5 điểm) Cho tam giác ABC vuông tại A. Đường tròn tâm O đường kính AB cắt BC tại H. Gọi I là trung điểm AH, BI cắt đường tròn (O) tại E. Tia AE cắt BC tại K. a) Chứng minh tam giác ABH vuông tại H và KI vuông góc với AB. b) Chứng minh: tan ABK . tan AKB = 2. c) Đường thẳng qua H và song song với AC cắt AK tại M. Chứng minh: MC là tiếp tuyến đường tròn ngoại tiếp Tam giác ABC.
Cho đường tròn O, đường kính AB. Lấy C thuộc (O) (C khác A và B). Tiếp tuyến tại A của đường tròn O cắt BC tại M.
a, CM: tam giác ABC vuông và BA2=BC.BM b, Gọi K là trung điểm của MA. CM:KC là tiếp tuyến của đường tròn O
a: Xét (O) có
ΔABC nội tiếp đường tròn
AB là đường kính
Do đó: ΔACB vuông tại C
Xét ΔBAM vuông tại A có AC là đường cao ứng với cạnh huyền MB
nên \(BA^2=BC\cdot BM\)
cho tam giác ABC vuông tại A. Vẽ các đường tròn O và i đi qua A và tiếp xúc với BC tại các điểm B và C. Gọi M là trung điểm của BC. Chứng Minh
a) Các đường tròn O và i tiếp xúc với nhau
b) AM là tiếp tuyến chung của hai đường tròn O và i
c) tam giác OMI vuông
d) BC là tiếp tuyến của đường tròn ngoại tiếp tam giác OMI.
1) Xét (O) có
ΔABC nội tiếp đường tròn(gt)
nên O là giao điểm ba đường trung trực của ΔABC
hay AO là đường trung trực của BC
⇒AO⊥BC
Ta có: AO⊥BC(cmt)
AO⊥AE(AE là tiếp tuyến có A là tiếp điểm của (O))
Do đó: AE//BC(Định lí 1 từ vuông góc tới song song)
2) Xét ΔADE và ΔCDB có
\(\widehat{ADE}=\widehat{CDB}\)(hai góc đối đỉnh)
DA=DC(D là trung điểm của AC)
\(\widehat{DAE}=\widehat{DCB}\)(hai góc so le trong, AE//BC)
Do đó: ΔADE=ΔCDB(c-g-c)
⇒AE=CB(hai cạnh tương ứng)
Xét tứ giác ABCE có
AE//CB(cmt)
AE=CB(cmt)
Do đó: ABCE là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Cho đường tròn ( I ), ( O ) nội tiếp , ngoại tiếp tam giác ABC . AI cắt ( O ) tại D .
a, Tam giác BDI là tam giác gì ?
b, Gọi M là trung điểm của BC . Kẻ AH vuông góc với BC . Gọi K là giao điểm của AH , MI . Chứng minh AK = r , r là bán kính của đường tròn tâm I .
Bài 5:Cho tam giác ABC vuông tại A, có AB = 8 cm; AC = 6 cm. Gọi O là trung điểm của AB, về đường tròn (O) tâm 0 đường kính AB; BC cắt đường tròn (O) tại điểm M.
a)Tính độ dài đoạn BC và AM
b)Từ C và tiếp tuyến với đường tròn (O) có tiếp điểm là E khác A.
c) Chứng minh tứ giác OACE nội tiếp
Bài 7: Cho tam giác ABC có ba góc nhọn, kẻ các đường cao AM và BN (M=BC, N=AC). Hai đường cao AM và BN cắt nhau tại H.
a)Chứng minh rằng tứ giác CMHN nội tiếp một đường tròn
b)Chứng minh rằng AM.CH = AC.MN