Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
OoO Kún Chảnh OoO
Xem chi tiết
Nguyễn Phương Anh
Xem chi tiết
jungkook
Xem chi tiết
Hoàng Thị Thùy Trang
Xem chi tiết

a)Nếu n là số lẻ thì n^2 là số lẻ,n^2+n là số lẻ,n^2+n+1 là số chẵn

Nếu n là số chẵn thì n^2 là số chẵn,n^2+n là số chẵn,n^2+n+1 là số lẻ(đề ghi sai)

mo chi mo ni
27 tháng 1 2019 lúc 16:04

a, Nếu n là số lẻ thì \(n^2\) lẻ suy ra \(n^2+n\) chẵn (lẻ cộng lẻ ra chẵn nha bạn)

suy ra \(n^2+n+1\) lẻ

 Nếu n là số chẵn thì \(n^2\) chẵn suy ra \(n^2+n\) chẵn (chẵn cộng chẵn vẫn ra chẵn nha bạn)

suy ra \(n^2+n+1\) lẻ

mo chi mo ni
27 tháng 1 2019 lúc 16:13

 câu b thì mk không chắc chắn với cách của mk lắm nhưng bạn cứ tham khảo thử nha!
Xét 2 trường hợp 

Xét \(n⋮5\)(n chia hết cho 5) suy ra \(n^2\)chia hết cho 5 mà 1 không chia hết cho 5 nên a không chia hết cho 5

Xét n không chia hết cho 5 suy ra \(n^2\)không chia hết cho 5 mà 1 không chia hết cho 5 nên a không chia hết cho 5

Vậy a không chia hết cho 5 với mọi số tự nhiên n

Đỗ Hoàng Minh
Xem chi tiết
Trần Quang Đài
17 tháng 4 2016 lúc 10:08

\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)

Vì đây là tích của 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3

Ngoài ra trong đó còn có 1 số chia hết cho 2 vì có 2 tự nhiên liên tiếp

Mà (2,3)=1 Do đó \(n^3-n\) chia hết cho 6

Đặng Thị Thương Huyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 10 2021 lúc 0:17

Đề sai rồi bạn

Trần Hà My
Xem chi tiết
Dương Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 3 2022 lúc 23:23

a.

- Với \(m=\pm1\Rightarrow-6x=1\Rightarrow x=-\dfrac{1}{6}\) có nghiệm

Đặt \(f\left(x\right)=\left(1-m^2\right)x^3-6x-1\)

- Với \(\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\Rightarrow1-m^2>0\)

\(f\left(0\right)=-1< 0\)

\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left[\left(1-m\right)^2x^3-6x-1\right]\)

\(=\lim\limits_{x\rightarrow-\infty}x^3\left(1-m^2-\dfrac{6}{m^2}-\dfrac{1}{m^3}\right)=-\infty\left(1-m^2\right)=+\infty\) dương

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;0\right)\)

- Với \(-1< m< 1\Rightarrow1-m^2< 0\)

\(\lim\limits_{x\rightarrow+\infty}\left[\left(1-m^2\right)x^3-6x-1\right]=\lim\limits_{x\rightarrow+\infty}x^3\left[\left(1-m^2\right)-\dfrac{6}{x^2}-\dfrac{1}{x^3}\right]=+\infty\left(1-m^2\right)=+\infty\) dương

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;+\infty\right)\)

Vậy pt đã cho có nghiệm với mọi m

Nguyễn Việt Lâm
8 tháng 3 2022 lúc 23:26

b. Để chứng minh pt này có đúng 1 nghiệm thì cần áp dụng thêm kiến thức 12 (tính đơn điệu của hàm số). Chỉ bằng kiến thức 11 sẽ ko chứng minh được

c. 

Đặt \(f\left(x\right)=\left(m-1\right)\left(x-2\right)^2\left(x-3\right)^3+2x-5\)

Do \(f\left(x\right)\) là hàm đa thức nên \(f\left(x\right)\) liên tục trên R

\(f\left(2\right)=4-5=-1< 0\)

\(f\left(3\right)=6-5=1>0\)

\(\Rightarrow f\left(2\right).f\left(3\right)< 0\) với mọi m

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (2;3) với mọi m

Hay pt đã cho luôn luôn có nghiệm

bùi nguyễn thiên long
Xem chi tiết
Kiều Vũ Linh
29 tháng 12 2023 lúc 9:41

a) Ta có:

(a - b) ⋮ 6

12b ⋮ 6

⇒ [(a - b) + 12b] ⋮ 6

⇒ (a - b + 12b) ⋮ 6

⇒ (a + 11b) ⋮ 6

b) Ta có:

(a + 11b) ⋮ 6 (cmt)

12a ⋮ 6

12b ⋮ 6

⇒ [12a + 12b - (a + 11b)] ⋮ 6

⇒ (12a + 12b - a - 11b) ⋮ 6

⇒ (11a + b) ⋮ 6

Nhữ Việt Hằng
Xem chi tiết