chứng tỏ rằng với mọi STN thì : ( n+2).(n + 2017 ) chia hết cho 2
Giúp mk nha
1:Từ 1 đến 100 có bao nhiêu số chia hết cho 2 , bao nhiêu số chia hết cho 5 ?
2:Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) . ( n + 6 ) chia hết cho 2 ?
3:Chứng tỏ gọi rằng với mọi stn n thì tích n . ( n + 5 ) chia hết cho 2 ?
4: Gọi A = n2 + n + 1 . ( n e N ) ( nghĩa là n thuộc stn bất kì )
Giúp với nha !!!!!
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
Bài 2: Với n lẻ thì n+3 chẵn => Cả tích chia hết cho 2
Với n chẵn thì n+6 hcawnx => Cả tích chia hết cho 2
Bài 3: Xét 2 trường hợp n chẵn, lẻ như bài 2
Bài 4 bạn ghi thiếu đề
1:Từ 1 đến 100 có bao nhiêu số chia hết cho 2 , bao nhiêu số chia hết cho 5 ?
2:Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) . ( n + 6 ) chia hết cho 2 ?
3:Chứng tỏ gọi rằng với mọi stn n thì tích n . ( n + 5 ) chia hết cho 2 ?
4: Gọi A = n2 + n + 1 . ( n e N ) ( nghĩa là n thuộc stn bất kì )
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
Chứng tỏ rằng với mọi STN n thì tích n.(n+5) chia hết cho 2
*Xét n lẻ=>n+5 chẵn=>n+5 chia hết cho 2
=>n.(n+5) chia hết cho 2
*Xét n chẵn=>n chia hết cho 2
=>n.(n+5) chia hết cho 2
Vậy n.(n+5) chia hết cho 2
Coi n = 2k với k \(\in\) N thì n.(n + 5) = 2k . (2k + 5)
Nếu 2k là lae thì (2k +5) = 1 số chẵn => 1 số chẵn \(\times\) 1 số chẵn = 1 số chẵn chia hết cho 2
Nếu 2k là chẵn thì (2k + 5) = 1 số lẻ => 1 số chẵn \(\times\) 1 số lẻ = 1 số chẵn chia hết cho 2
Vậy với mọi n thì n.(n + 5) đều chia hết cho 2.
Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+6) chia hết cho 2.
Giúp mk nha! Nghiêm cấm chép mạng nha.
Xét số n trong các trường hợp :
+ n là số lẽ : \(\left(n+3\right)\): chẵn ; \(\left(n+6\right)\)lẻ \(\Rightarrow\left(n+3\right).\left(n+6\right)⋮2\)
+ n là số số chẵn : \(\left(n+3\right)\): lẽ ; \(\left(n+6\right)\): chẵn \(\Rightarrow\left(n+3\right).\left(n+6\right)⋮2\)
Vậy với mọi số tự nhiên n thì ( n+ 3 ) . ( n+6 ) đều chia hết cho 2
(n+3).(n+6)
Xét:
-n là 1 số lẻ
=>n+3 chẵn =>(n+3).(n+6) chẵn =>(n+3).(n+6)\(⋮\)2
-n là 1 số chẵn
=>n+6 chẵn =>(n+3).(n+6) chẵn =>(n+3).(n+6)\(⋮\)2
Vậy với mọi n thì tích (n+3).(n+6) chia hết cho 2
Mn giải giúp mình bài này zới : ( kèm theo cách giải )
[ Câu 1 ] Có bn stn nhỏ hơn 1 chia cho 5 dư 3 ?
[ Câu 2 ] Chứng tỏ rằng với mọi stn n thì tích n . ( n + 5 ) chia hết cho 2 .
[ Câu 3 ] Gọi A = n2 + n + 1 ( n e N ) . Chứng tỏ rằng
a ) A không chia hết cho 2
b) A không chia hết cho 5
1) Không có số tự nhiên nào nhỏ hơn 1 chia 5 dư 3
2) + Nếu n lẻ thì n + 5 chẵn => n + 5 chia hết cho 2 =>n.(n + 5) chia hết cho 2
+ Nếu n chẵn thì n chia hết cho 2 => n.(n + 5) chia hết cho 2
=> n.(n + 5) luôn chia hết cho 2
3) A = n2 + n + 1
A = n.(n + 1) + 1
a) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp =>n.(n + 1) chia hết cho 2 mà 1 không chia hết cho 2
=> A không chia hết cho 2
b) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chỉ có thể tận cùng là 0; 2; 6
=> A = n.(n + 1) + 1 chỉ có thể tận cùng là 1; 3; 7 không chia hết cho 5
a) Chứng tỏ rằng với mọi STN n thì tích n.(n+5) chia hết cho 2
b) Cho A=4+4^2+4^3+...+4^2019
giúp mik với nhé.THANK YOU
a,
+ nếu n \(⋮\) 2 \(\Rightarrow n\left(n+5\right)⋮2\)
+ nếu 2 chia 2 dư 1
=> n có dạng 2k+1
=> n(n+5) = (2k+1)(2k+6) = 2(2k+1)(k+3) \(⋮2\)
=> \(n\left(n+5\right)⋮2\forall n\)
vậy.....
b, \(A=4+4^2+4^3+...+4^{2019}\)
\(4A=4^2+4^3+4^4+...+4^{2020}\)
\(3A=4^{2020}-4\)
\(A=\frac{4^{2020}-4}{3}\)
vậy.......
bạn làm có đúng ko đó
tìm các số tự nhiên a và b sao cho a.b=105 và a<b
chứng tỏ rằng với mọi số tự nhiên n thì (n+2017).(n+2018) luôn chia hết cho 2
chứng tỏ rằng với mọi số tự nhiên n thì (n+8).(n+12). (n+7)luôn chia hết cho 3
giúp mình với mình đang gấp!
Chứng tỏ rằng mọi stn n thì tích (n+2).(n+6)chia hết cho 2
chứng minh rằng với mọi STN n khác 0 thì só M=n^3+3n^2+2n chia hết cho 6! (bạn nào giỏi giải giúp mình nha,please)
ta có: M=n^3+3n^2+2n=2n(n+1)+n^2(n+1)=n(n+1)(n+2)
ta thấy n(n+1)(n+2) là tích của 3 số nguyên liên tiếp
=>tồn tại 1 số chia hết cho 2(vì n(n+1) là tích 2 số nguyên liên tiếp) (với n thuộc Z)
tồn tại 1 số chia hết cho 3( vì n(n+1)(n+2) là tích 3 số nguyên liên tiếp)
=>n(n+1)(n+2) chia hết cho 2.3(vì (2;3)=1)
=>n(n+1)(n+2) chia hết cho 6
=>n^3+3n^2+2n chia hết cho 6
có chỗ nào ko hiểu thì hỏi mk nhé
Chứng tỏ rằng với n thuộc N thì 10n + 18.n-1 chia hết cho 27
Mọi người nhanh lên giúp mk nha mk đang cần gấp lắm
\(TH1;n=3k\)\(\Rightarrow10^n+18n-1=\)\(10^{3k}+18.3k-1=1000^k+54k-1\equiv1+54k-1\left(mod27\right)\equiv0\left(mod27\right)\left(1\right)\)
\(TH2;n=3k+1\Rightarrow10^n+18n-1=10^{3k+1}+18.\left(3k+1\right)-1\)\(=10^{3k}.10+18.\left(3k+1\right)-1=1000^k.10+54k+18-1\)\(\equiv1.10+54k+17\left(mod27\right)\equiv54k+27\left(mod27\right)\equiv0\left(mod27\right)\left(2\right)\)
\(TH3;n=3k+2\Rightarrow10^n+18n-1=10^{3k+2}+54k+36-1\)\(=1000^{3k}.100+54k+35\equiv1.100+54k+35\left(mod27\right)\)\(\equiv54k+135\left(mod27\right)\equiv0\left(mod27\right)\left(3\right)\)\(Từ\left(1\right);\left(2\right);\left(3\right)\Rightarrow10^n+18n-1⋮27,\forall n\in N\left(ĐPCM\right)\)
10n+18n-1=10n-1+18n=99.....9(n chữ số 9)+18n
=9.(111....1(n chữ số 1)+2n)
xét --------------------------------=11...1-n+3n
dễ thấy tổng các chữ số của 11....1(n chữ số 1) là n
=>11....1-n chia hết cho 3
=>11.....1-n+3 chia hết cho 3
=>10n+18n-1 chia hết cho 27