Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Mai
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 2 2018 lúc 2:43

Giải bài 62 trang 91 SGK Toán 9 Tập 2 | Giải toán lớp 9

a) Vẽ tam giác đều ABC có cạnh bằng 3cm (dùng thước thẳng và compa).

+ Dựng đoạn thẳng AB = 3cm .

+Dựng cung tròn (A, 3) và cung tròn (B, 3). Hai cung tròn này cắt nhau tại điểm C.

Nối A với C, B với C ta được tam giác đều ABC cạnh 3cm.

b) * Vẽ đường tròn:

Tâm O của đường tròn ngoại tiếp tam giác đều ABC là giao điểm của ba đường trung trực.

Dựng đường trung trực của đoạn thẳng BC và CA.

Hai đường trung trực cắt nhau tại O.

Vẽ đường tròn tâm O, bán kính OA = OB = OC ta được đường tròn ngoại tiếp tam giác ABC.

* Tính bán kính đường tròn.

+ Gọi A’ là trung điểm BC ⇒ A’C = BC/2 = a/2.

và AA’ ⊥ BC

Giải bài 62 trang 91 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Do tam giác ABC là tam giác đều nên 3 đường trung trực đồng thời là ba đường trung tuyến

=> Giao điểm ba đường trung trực cũng là giao điểm ba đường trung tuyến

Suy ra O là trọng tâm tam giác ABC.

Giải bài 62 trang 91 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy R = √3 (cm).

c) * Vẽ đường tròn:

Gọi A’; B’; C’ lần lượt là chân đường phân giác trong ứng với các góc Giải bài 62 trang 91 SGK Toán 9 Tập 2 | Giải toán lớp 9

Do tam giác ABC là tam giác đều nên A’; B’; C’ đồng thời là trung điểm BC; CA; AB.

Đường tròn (O; r) là đường tròn tâm O; bán kính OA’ = OB’ = OC’.

* Tính r:

Giải bài 62 trang 91 SGK Toán 9 Tập 2 | Giải toán lớp 9

d) Vẽ các tiếp tuyến với đường tròn (O; R) tại A, B, C. Ba tiếp tuyến này cắt nhau tại I, J, K. Ta có ΔIJK là tam giác đều ngoại tiếp (O; R).

Sách Giáo Khoa
Xem chi tiết
Đặng Phương Nam
12 tháng 4 2017 lúc 16:35

a) Vẽ tam giác đều ABC có cạnh bằng 3cm (dùng thước có chia khoảng và compa)

b) Tâm O của đường tròn ngoại tiếp tam giác đều ABC là giao điểm của ba đường trung trực (đồng thời là ba đường cao, ba trung tuyến, ba phân giác của tam giác đều ABC).

Ta có: R= OA = AA' = . = . = √3 (cm).

c) Đường tròn nội tiếp (O;r) tiếp xúc ba cạnh của tam giác đều ABC tại các trung điểm A', B', C' của các cạnh.

r = OA' = AA' = = (cm)

d) Vẽ các tiếp tuyến với đường tròn (O;R) tại A,B,C. Ba tiếp tuyến này cắt nhau tại I, J, K. Ta có ∆IJK là tam giác đều ngoại tiếp (O;R).



Nguyễn Đắc Định
12 tháng 4 2017 lúc 21:15

a) Vẽ tam giác đều ABC có cạnh bằng 3cm (dùng thước có chia khoảng và compa)

b) Tâm O của đường tròn ngoại tiếp tam giác đều ABC là giao điểm của ba đường trung trực (đồng thời là ba đường cao, ba trung tuyến, ba phân giác của tam giác đều ABC).

Ta có: R= OA = AA' = . = . = √3 (cm).

c) Đường tròn nội tiếp (O;r) tiếp xúc ba cạnh của tam giác đều ABC tại các trung điểm A', B', C' của các cạnh.

r = OA' = AA' = = (cm)

d) Vẽ các tiếp tuyến với đường tròn (O;R) tại A,B,C. Ba tiếp tuyến này cắt nhau tại I, J, K. Ta có ∆IJK là tam giác đều ngoại tiếp (O;R).

nguyen hoang phi hung
Xem chi tiết
quản đức phú
Xem chi tiết
Ngọn Gió Vô Tình
Xem chi tiết
Nhi Trần Nguyễn Uyển
8 tháng 12 2017 lúc 17:36

hình bạn tự kẻ nha

a>   Xét tam giác ADE và tam giác AHB có : góc DAE = HAB(đối đỉnh);  góc ADE = góc AHB = 90 độ; AD = AH = bán kính==> tg ADE = AHB (c.g.v_g.n.k)

b>    vì tg ADE = AHB ==> AE = AB ==> A là trung điểm của BE (1)

        xét tg CBE ta thấy CA vuông góc với AB ==> CA là đường cao (2)

         từ (1) và (2) ==> tg CBE cân tại C

c>    vì tg CBE cân tại C ==> CA vừa là đường cao vừa là tia pg xuất phát từ đỉnh C ==> góc ACH = ACI 

        xét tg ACH và tg ACI có: góc AHC = AIC = 90 độ;  AC là cạnh chung; góc ACH = ACI(cmt) ==> tg ACH = ACI (c.h_g.n)

                                                                                                                                                            => AH=AI=bán kính (3)

         mặt khác AI vuông góc với CE (4)

         từ (3) và (4) ==> CE là tiếp tuyến ( khoảng cách từ tâm đến đường thẳng bằng bán kính)

Dark_Hole
Xem chi tiết
Đỗ Tuệ Lâm
25 tháng 2 2022 lúc 21:36

Giữ lời hứa 1 câu trl 3 coin

Tổng cộng mốt e đủ coin thì e đưa cj 6 coin , h cj cho khất nợ:)

undefined

Lê Đức Anh
Xem chi tiết
thu hien
18 tháng 8 2018 lúc 15:48

minh moi bn vao link nay dang ky roi tra loi minigame nha : https://alfazi.edu.vn/question/5b7768199c9d707fe5722878

Nguyễn Tất Đạt
19 tháng 8 2018 lúc 19:57

A B C O D E I

Gọi tiếp điểm của đường tròn (I) với AB và (O;R) theo thứ tự là D và E.

Đường tròn (I) tiếp xúc trong với (O;R) tại E nên 4 điểm A;O;I;E thẳng hàng.

Ta có: AO là phân giác của ^BAC (Do \(\Delta\)ABC đều nội tiếp (O))

=> AI là phân giác ^BAC => ^DAI = ^BAC / 2 = 300 

AB tiếp xúc với (I) tại D => ^ADI = 900

Xét \(\Delta\)AID có: ^ADI = 900; ^DAI = 300 => \(\Delta\)AID nửa đều \(\Rightarrow\frac{ID}{AI}=\frac{1}{2}\)

Hay \(\frac{IE}{AI}=\frac{1}{2}\Rightarrow\frac{IE}{AE}=\frac{1}{3}\)(Do A;I;E thẳng hàng) \(\Rightarrow IE=ID=\frac{2R}{3}\)

Thấy ^ABE chắn nửa đg tròn (O;R) => ^ABE = 900 => BE vuông góc AB. Mà ID vuông góc AB

=> ID // BE => \(\frac{IE}{AE}=\frac{BD}{AB}=\frac{1}{3}\)(Theo ĐL Thales)

Áp dụng ĐL Pytagorean ta dễ dàng tính được: \(AB=R.\sqrt{3}\)\(\Rightarrow BD=\frac{AB}{3}=\frac{R}{\sqrt{3}}\)

Trong \(\Delta\)BDI có ^IDB = 900 . Áp dụng ĐL Pytagorean:

\(IB=\sqrt{BD^2+ID^2}=\sqrt{\frac{R^2}{3}+\frac{4R^2}{9}}=\sqrt{\frac{7R^2}{9}}=\frac{R.\sqrt{7}}{3}\)

ĐS: .....

Thanh Phan
Xem chi tiết
Lan Anh
Xem chi tiết
Ninja bí ẩn
29 tháng 4 2018 lúc 21:15

b cm đê