Phương trình bậc hai có hai nghiệm x1 = 13 và x2 = 25 là
A. x2 – 13x + 25 = 0.
B. x2 – 25x + 13 = 0.
C. x2 – 38x + 325 = 0.
D. x2 + 38x + 325 = 0.
Cho hai phương trình x2+2022x+1=0 (1) và x2+2023x+1 (2).Gọi x1,x2 là nghiệm của phương trình (1) ; x3,x4 là nghiệm của phương trình (2).Giá trị của biểu thức P=(x1+x3)(x2+x3)(x1-x4)(x2-x4) là
A.4045 B.-1 C.1 D.0
Tìm m để phương trình
a) x2+2x+m=0 có hai nghiệm x1,x2 thỏa mãn x1=3x2
b) x2-(m+5)x-m+6=0 có hai nghiệm x1,x2 thỏa mãn 2x1+3x2=13
c) x2-2(m+1)x+m2-2m+29=0 có hai nghiệm x1,x2 thỏa mãn x1=2x2
bạn đăng tách ra cho mn giúp nhé
a, Để pt có 2 nghiệm pb
\(\Delta'=1-m\ge0\Leftrightarrow m\le1\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.\)
\(x_1-3x_2=0\)(3)
Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1=-2\\x_2=-2-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{1}{2}\\x_2=-\dfrac{3}{2}\end{matrix}\right.\)
Thay vào (2) ta được \(m=\left(-\dfrac{1}{2}\right)\left(-\dfrac{3}{2}\right)=\dfrac{3}{4}\)
\(b,\Delta=\left(m+5\right)^2-4\left(-m+6\right)\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-7-4\sqrt{3}\\m\ge-7+4\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x1+x2=m+5\\2x1+3x2=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x1+2x2=2m+10\\2x1+3x2=13\end{matrix}\right.\)\(\)
\(\Rightarrow x2=13-2m-10=3-2m\Rightarrow x1=m+5-x2=m+5-3+2m=3m+2\)
\(x1x2=6-m\Rightarrow\left(3-2m\right)\left(3m+2\right)=6-m\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=1\left(tm\right)\end{matrix}\right.\)
\(c,\Delta'=\left(m+1\right)^2-\left(m^2-2m+29\right)\ge0\Leftrightarrow m\ge7\)
\(\Rightarrow\left\{{}\begin{matrix}x1+x2=2m+2\\x1=2x2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x2=\dfrac{2m+2}{3}\\x1=\dfrac{2\left(2m+2\right)}{3}\end{matrix}\right.\)
\(\Rightarrow x1.x2=\dfrac{\left(2m+2\right).2\left(2m+2\right)}{9}=m^2-2m+29\Leftrightarrow\left[{}\begin{matrix}m=11\left(tm\right)\\m=23\left(tm\right)\end{matrix}\right.\)
Giả sử x 1 , x 2 là hai nghiệm của phương trình bậc hai a x 2 + bx + c = 0 có ∆ ’ = 0. Điều nào sau đây là đúng?
A . x 1 = x 2 = b 2 a B . x 1 = x 2 = - b ' a C . x 1 = x 2 = - b a D . x 1 = x 2 = - b ' 2 a
Giả sử x 1 , x 2 là hai nghiệm của phương trình bậc hai a x 2 + bx + c = 0 có ∆’ = 0
Do đó, phương trình có nghiệm kép
Chọn B
Cho phương trình bậc hai: x 2 + ax + b = 0 (1) có hai nghiệm phân biệt x 1 ; x 2 . Điều kiện để x 1 ; x 2 > 0 là:
A. a 2 > 4 b a < 0 b > 0
B. a 2 ≥ 4 b a > 0 b > 0
C. a 2 > 4 b a < 0 b < 0
D. a 2 ≥ 4 b a < 0 b < 0
Giả sử x 1 , x 2 là hai nghiệm của phương trình x 2 + px + q = 0. Hãy lập một phương trình bậc hai có hai nghiệm x 1 + x 2 , x 1 x 2
Giả sử x 1 , x 2 la hai nghiệm của phương trình x 2 + px + q = 0
Theo hệ thức Vi-ét ta có: x 1 + x 2 = - p/1 = - p; x 1 x 2 = q/1 = q
Phương trình có hai nghiệm là x 1 + x 2 và x 1 x 2 tức là phương trình có hai nghiệm là –p và q.
Hai số -p và q là nghiệm của phương trình.
(x + p)(x - q) = 0 ⇔ x 2 - qx + px - pq = 0 ⇔ x 2 + (p - q)x - pq = 0
Phương trình cần tìm: x 2 + (p - q)x - pq = 0
Cho hai phương trình x 2 − 13 x + 2 m = 0 ( 1 ) v à x 2 − 4 x + m = 0 ( 2 ) . Xác định m để một nghiệm phương trình (1) gấp đôi một nghiệm phương trình (2)
A. −45
B. −5
C. 0 và −5
D. Đáp án khác
Gọi nghiệm của phương trình (2) là x0 (x0 ≠ 0)
thì nghiệm phương trình (1) là 2x0
Thay x0; 2x0 lần lượt vào phương trình (2) và (1)
ta được
2 x 0 2 − 13.2 x 0 + 2 m = 0 x 0 2 − 4 x 0 + m = 0
⇔ 4 x 0 2 − 26 x 0 + 2 m = 0 x 0 2 − 4 x 0 + m = 0 ⇔ 4 x 0 2 − 26 x 0 + 2 m = 0 4 x 0 2 − 16 x 0 + 4 m = 0
⇔ 10x0 = −2m ⇔ x 0 = − m 5
Do x0 ≠ 0 nên m ≠ 0
Thay x 0 = − m 5 vào phương trình (2)
ta được − m 5 2 − 4. − m 5 + m = 0
⇔ m 2 25 + 4 m 5 + m = 0
⇔ m 2 25 + 9 m 5 = 0 ⇒ m = 0 m = − 45
Kết hợp m ≠ 0 ta được m = −45
Đáp án cần chọn là: A
Đối với mỗi phương trình sau, kí hiệu x1 và x2 là hai nghiệm (nếu có). Không giải phương trình, hãy điền vào những chỗ trống (...):
a ) 2 x 2 – 17 x + 1 = 0 ; Δ = … ; x 1 + x 2 = … ; x 1 . x 2 = … ; b ) 5 x 2 – x – 35 = 0 ; Δ = … ; x 1 + x 2 = … ; x 1 . x 2 = … ; c ) 8 x 2 – x + 1 = 0 ; Δ = … ; x 1 + x 2 = … ; x 1 . x 2 = … ; d ) 25 x 2 + 10 x + 1 = 0 ; Δ = … ; x 1 + x 2 = … ; x 1 . x 2 = … ;
a) 2 x 2 – 17 x + 1 = 0
Có a = 2; b = -17; c = 1
Δ = b 2 – 4 a c = ( - 17 ) 2 – 4 . 2 . 1 = 281 > 0 .
Theo hệ thức Vi-et: phương trình có hai nghiệm x1; x2 thỏa mãn:
x 1 + x 2 = − b / a = 17 / 2 x 1 x 2 = c / a = 1 / 2
b) 5 x 2 – x – 35 = 0
Có a = 5 ; b = -1 ; c = -35 ;
Δ = b 2 – 4 a c = ( - 1 ) 2 – 4 . 5 . ( - 35 ) = 701 > 0
Theo hệ thức Vi-et, phương trình có hai nghiệm x1; x2 thỏa mãn:
x 1 + x 2 = − b / a = 1 / 5 x 1 ⋅ x 2 = c / a = − 35 / 5 = − 7
c) 8 x 2 – x + 1 = 0
Có a = 8 ; b = -1 ; c = 1
Δ = b 2 – 4 a c = ( - 1 ) 2 – 4 . 8 . 1 = - 31 < 0
Phương trình vô nghiệm nên không tồn tại x1 ; x2.
d) 25 x 2 + 10 x + 1 = 0
Có a = 25 ; b = 10 ; c = 1
Δ = b 2 – 4 a c = 10 2 – 4 . 25 . 1 = 0
Khi đó theo hệ thức Vi-et có:
x 1 + x 2 = − b / a = − 10 / 25 = − 2 / 5 x 1 x 2 = c / a = 1 / 25
Nhận thấy rằng phương trình tích (x + 2)(x – 3) = 0, hay phương trình bậc hai x 2 – x – 6 = 0, có hai nghiệm là x 1 = -2, x 2 = 3. Tương tự, hãy lập những phương trình bậc hai mà nghiệm mỗi phương trình là một trong những cặp số sau : x 1 = 2, x 2 = 5
Hai số 2 và 5 là nghiệm của phương trình :
(x – 2)(x – 5) = 0 ⇔ x 2 – 7x + 10 = 0
Nhận thấy rằng phương trình tích (x + 2)(x – 3) = 0, hay phương trình bậc hai x 2 – x – 6 = 0, có hai nghiệm là x 1 = -2, x 2 = 3. Tương tự, hãy lập những phương trình bậc hai mà nghiệm mỗi phương trình là một trong những cặp số sau : x 1 = 0,1, x 2 = 0,2
Hai số 0,1 và 0,2 là nghiệm của phương trình :
(x – 0,1)(x – 0,2) = 0 ⇔ x 2 – 0,3x + 0,02 = 0
Cho phương trình x 2 + 2 m x - 3 m + 4 = 0 . Giả sử phương trình có hai nghiệm x1, x2. Lập phương trình bậc hai có các nghiệm là x12 và x22.
Đáp án: D
Theo định lý Vi-ét ta có
Khi đó, là nghiệm của phương trình