Rút gọn: \(\dfrac{-3\sqrt{16a}+5a\sqrt{16ab^2}}{2\sqrt{a}}\) (với a > 0, b > 0).
Rút gọn các biểu thức sau ( với \(a>0,b>0\) )
a) \(5\sqrt{a}-4b\sqrt{25a^3}+5a\sqrt{16ab^2}-2\sqrt{9a}\)
b) \(5a\sqrt{64ab^3}-\sqrt{3}.\sqrt{12a^3b^3}+2ab\sqrt{9ab}-5b\sqrt{81a^3b}\)
a) Ta có:
\(5\sqrt{a}-4b\sqrt{25a^3}+5a\sqrt{16ab^2}-2\sqrt{9a}\)
\(=5\sqrt{a}-4b.5a\sqrt{a}+5a.4b\sqrt{a}-2.3\sqrt{a}\)
\(=5\sqrt{a}-20ab\sqrt{a}+20ab\sqrt{a}-6\sqrt{a}\) \(=-\sqrt{a}\)
b) Ta có:
\(5a\sqrt{64ab^3}-\sqrt{3}.\sqrt{12a^3b^3}+2ab\sqrt{9ab}\) \(-5b\sqrt{81a^3b}\)
\(=5a.8b\sqrt{ab}-\sqrt{3.12a^3b^3}+2ab.3\sqrt{ab}\) \(-5b.9a\sqrt{ab}\)
\(=40ab\sqrt{ab}-6ab\sqrt{ab}+6ab\sqrt{ab}-45ab\)\(\sqrt{ab}\)
\(=-5ab\sqrt{ab}\)
a)5\(\sqrt{a}\)\(-4b\sqrt{25a^3}+5a\sqrt{16ab^2}-2\sqrt{9a}\)
=5\(\sqrt{a}-20ab\sqrt{a}+20ab\sqrt{a}-6\sqrt{a}\)
= \(\sqrt{a}\left(5-20ab+20ab-6\right)\)
= -\(\sqrt{a}\)
1, rút gọn
g, \(\sqrt{5a}\) - \(\sqrt{16a}\) + \(\sqrt{49a}\) (a>=0)
m, \(\dfrac{20}{3+\sqrt{5}+\sqrt{2+2\sqrt{5}}}\)
g: \(=\sqrt{5a}-4\sqrt{a}+7\sqrt{a}\)
\(=\sqrt{5a}+3\sqrt{a}\)
b: \(=\dfrac{40}{6+2\sqrt{5}+2\cdot\sqrt{2+2\sqrt{5}}}\)
\(=\dfrac{40}{\left(\sqrt{5}+1\right)^2+\sqrt{2}\cdot\sqrt{4+4\sqrt{5}}}\)
\(=\dfrac{40}{\left(\sqrt{5}+1\right)^2+2\sqrt{2}\cdot\sqrt{\sqrt{5}+1}}\)
\(=\dfrac{40}{\left(\sqrt{\sqrt{5}+1}\right)\left[\left(\sqrt{\sqrt{5}+1}\right)^3+2\sqrt{2}\right]}\)
\(\sqrt{4x^2-4x+1}+2=3x\)
Rút gọn
\(7\sqrt{a}-5b\sqrt{16a^3}+4a\sqrt{25ab^2}-3\sqrt{16a}\) với a>0, b>0
\(\sqrt{4x^2-4x+1}+2=3x\)
Vì \(VT\ge2\Rightarrow VP\ge2\Rightarrow x\ge\dfrac{2}{3}\)
\(\Rightarrow\sqrt{\left(2x-1\right)^2}+2=3x\Rightarrow\left|2x-1\right|+2=3x\)
\(\Rightarrow2x-1+2=3x\left(x\ge\dfrac{2}{3}\right)\Rightarrow x=1\)
\(7\sqrt{a}-5b\sqrt{16a^3}+4a\sqrt{25ab^2}-3\sqrt{16a}\)
\(=7\sqrt{a}-20ab\sqrt{a}+20ab\sqrt{a}-12\sqrt{a}=-5\sqrt{a}\)
Rút gọn biểu thức sau : ( với a > 0; b > 0 )
5\(\sqrt{a}\)- 4b\(\sqrt{25a^3}\)+ 5a\(\sqrt{16ab^2}\)
Đáp án :
\(5\sqrt{a}-4b\sqrt{25a^3}\) \(+5a\sqrt{16ab^2}\)
= \(5\sqrt{a}-4b\sqrt{\left(5a\right)^2.a}+5a\sqrt{\left(4b\right)^2.a}\)
= \(5\sqrt{a}-\left(-20ab\right)\sqrt{a}+20ab\sqrt{a}\)
= \(5\sqrt{a}\)
Rút gọn:
a)\(\sqrt{125}-4\sqrt{45}\)+\(3\sqrt{20}-\sqrt{80}\)
b)\(5\sqrt{a}-4b\sqrt{25a^2}\)+\(5a\sqrt{16ab^2}-2\sqrt{9a}\)(với a>0. b>0)
c)\(5a\sqrt{64ab^3}-\)\(\sqrt{3}.\sqrt{12a^3b^3}-5b\sqrt{81a^3b}\)
a) Ta có: \(\sqrt{125}-4\sqrt{45}+3\sqrt{20}-\sqrt{80}\)
\(=5\sqrt{5}-4.3\sqrt{5}+3.2\sqrt{5}-4\sqrt{5}\)
\(=5\sqrt{5}-12\sqrt{5}+6\sqrt{5}-4\sqrt{5}\)
\(=-5\sqrt{5}\)
\(\approx-11,18033989\)
b, \(5\sqrt{a}-4b\sqrt{25a^2}+5a\sqrt{16ab^2}-2\sqrt{9a}\)
\(=5\sqrt{a}-20ab+5a.4\sqrt{a}b-6\sqrt{a}\)
\(=-\sqrt{a}-20ab+20a\sqrt{a}b\)
B=\(\dfrac{2\left(x+4\right)}{x-3\sqrt{x}-4}+\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{8}{\sqrt{x}-4}\) Với x≥0,x≠16
a)Rút gọn B
Với x >= 0 ; x khác 16
\(B=\dfrac{2x+8+x-4\sqrt{x}-8\sqrt{x}-8}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}=\dfrac{3x-12\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+1}\)
Rút gọn:
2) \(\sqrt{98}-\sqrt{72}+0,5\sqrt{8}\)
3) \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với a \(\ge\) 0
4) \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\) với b \(\ge\) 0
2) \(\sqrt{98}-\sqrt{72}+0,5\sqrt{8}\)
\(=7\sqrt{2}-6\sqrt{2}+\sqrt{2}\)
\(=\left(7-6+1\right)\sqrt{2}\)
\(=2\sqrt{2}\)
3) \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\)
\(=3\sqrt{a}-4\sqrt{a}+7\sqrt{a}\)
\(=\left(3-4+7\right)\sqrt{a}\)
\(=6\sqrt{a}\)
4) \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\)
\(=4\sqrt{b}+4\sqrt{10b}-9\sqrt{10b}\)
\(=4\sqrt{b}-5\sqrt{10b}\)
B=(\(\dfrac{\sqrt[]{x}}{\sqrt{x}+4}\)+\(\dfrac{4}{\sqrt{x}-4}\)):\(\dfrac{x+16}{\sqrt{x}+2}\) với x>0,x khác 16
a, Rút gọn biểu thức B
b,Tìm B khi x=9
a: \(B=\dfrac{x-4\sqrt{x}+4\sqrt{x}+16}{x-4}\cdot\dfrac{\sqrt{x}+2}{x+16}=\dfrac{1}{\sqrt{x}-2}\)
b: Khi x=9 thì B=1/(3-2)=1
rút gọn biểu thức sau\(5\sqrt{a}-4b\sqrt{25a^{ }3}+5a\sqrt{16ab^2}-2\sqrt{9a}\)
Mình sữa đề 1 chút nha
\(5\sqrt{a}-4b\sqrt{25a^3}+5a\sqrt{16ab^2}-2\sqrt{9a}\)
\(=5\sqrt{a}-20ab\sqrt{a}+20ab\sqrt{a}-6\sqrt{a}\)
\(=-\sqrt{a}\)
rút gọn các biểu thức sau
c,\(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\) d,\(5\sqrt{16a}-4\sqrt{25a}-2\sqrt{100a}+\sqrt{169a}\) với a ≥ 0
e,\(5\sqrt{4a}-4\sqrt{a^2}-\sqrt{100a}\) với a ≥ 0 f,\(3\sqrt{4a^6}-5^3\) với a ≤ 0