cho tam giác ABC .Từ M là điểm bất kì trong tam giác kẻ MD vuông góc với BC, ME vuông với AC, MF vuông với AD. Chứng minh rằng: BD2+CE2+AF2=DC2+EA2+FB2
Cho tam giác vuông ABC. Từ một điểm M bất kì trong tam giác kẻ MD, ME, MF lần lượt vuông góc với các cạnh BC, AC, AB. Chứng minh rằng: B D 2 + C E 2 + A F 2 = D C 2 + E A 2 + F B 2
Áp dụng định lí Pi-ta-go vào tam giác vuông BDM, ta có:
B M 2 = B D 2 + D M 2 ⇒ B D 2 = B M 2 - D M 2 (1)
Áp dụng định lí Pi-ta-go vào tam giác vuông CEM, ta có:
C M 2 = C E 2 + E N 2 ⇒ C E 2 = C M 2 - E M 2 (2)
Áp dụng định lí Pi-ta-go vào tam giác vuông AFM, ta có:
A M 2 = A F 2 + F M 2 ⇒ A F 2 = A M 2 - F M 2 (3)
Cộng từng vế của (1), (2) và (3) ta có:
B D 2 + C E 2 + A F 2 = B M 2 - D M 2 + C M 2 - E M 2 + A M 2 - F M 2 (4)
Áp dụng định lí Pi-ta-go vào tam giác vuông BFM, ta có:
B M 2 = B F 2 + F M 2 (5)
Áp dụng định lí Pi-ta-go vào tam giác vuông CDM, ta có:
C M 2 = C D 2 + D M 2 (6)
Áp dụng định lí Pi-ta-go vào tam giác vuông AEM, ta có:
A M 2 = A E 2 + E M 2 (7)
Thay (5), (6), (7) vào (4) ta có:
B D 2 + C E 2 + A F 2 = B F 2 + F M 2 - D M 2 + C D 2 + D M 2 - E M 2 + A E 2 + E M 2 - F M 2 = D C 2 + E A 2 + F B 2
Vậy B D 2 + C E 2 + A F 2 = D C 2 + E A 2 + F B 2
cho tam giác ABC. Từ M là 1 điểm bất kì nằm trong tam giác. Kẻ MD vuông góc với BC, ME vuông góc với AC, MF vuông với AD. CHứng minh
BD2+CE2+AF2=DC2+EA2+FB2
cho tam giác ABC .Từ M là 1 điểm bất kì trong tam giác. Kẻ MD vuông góc với BC, kẻ ME vuông góc với AC, kẻ MF vuông góc với AB.Chứng minh rằng: BD2+CE2+AF2=DC2+EA2+FB2
a: Xét ΔAMB và ΔAMC co
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
=>góc MAB=góc MAC
Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF và ME=MF
b: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
c: IN//EM
=>NI/ME=BN/BM
=>NI/MF=BN/CM
=>NI/BN=MF/CM
FM//NK
=>MF/NK=CM/CN
=>MF/CM=NK/CN
=>NK/CN=NI/BN=(NI+NK)/BC ko đổi
a: Xét ΔAMB và ΔAMC co
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
=>góc MAB=góc MAC
Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF và ME=MF
b: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
c: IN//EM
=>NI/ME=BN/BM
=>NI/MF=BN/CM
=>NI/BN=MF/CM
FM//NK
=>MF/NK=CM/CN
=>MF/CM=NK/CN
=>NK/CN=NI/BN=(NI+NK)/BC ko đổi
a: Xét ΔAMB và ΔAMC co
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
=>góc MAB=góc MAC
Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF và ME=MF
b: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
c: IN//EM
=>NI/ME=BN/BM
=>NI/MF=BN/CM
=>NI/BN=MF/CM
FM//NK
=>MF/NK=CM/CN
=>MF/CM=NK/CN
=>NK/CN=NI/BN=(NI+NK)/BC ko đổi
a: Xét ΔAMB và ΔAMC co
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
=>góc MAB=góc MAC
Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF và ME=MF
b: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
c: IN//EM
=>NI/ME=BN/BM
=>NI/MF=BN/CM
=>NI/BN=MF/CM
FM//NK
=>MF/NK=CM/CN
=>MF/CM=NK/CN
=>NK/CN=NI/BN=(NI+NK)/BC ko đổi
a: Xét ΔAMB và ΔAMC co
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
=>góc MAB=góc MAC
Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF và ME=MF
b: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
cho tam giác ABC .Lấy điểm M bất kì trong tam giác .Kẻ MD vuông với BC, ME vuông với AC, MF vuông với AB chứng minh rằng :
BD2+CE2+AF2=DC2+AE2+BF2