chứng minh rằng : nếu a > b thì 2a > 2b - 1
Chứng minh rằng nếu hai số nguyên a và b thỏa mãn \(a^2+b^2\)chia hết cho 5 thì 2a+b; 2b+a; 2a-b; 2b-a cũng chia hết cho 5
Chứng minh rằng :
a) Nếu a ≤ b thì -2a+3 ≥ -2b+3
b) Nếu a > b thì 2a-5 > 2b-5
c) Nếu a > b thì 5a > 5b-1
a) vì a≤ b
Nhân cả 2 vế của BĐT với -2
=> -2a≥ -2b
Cộng cả 2 vế của BĐT với 3
=> -2a+3 ≥ -2b+3
b) vì a>b
Nhân cả 2 vế với 2
=> 2a>2b
Cộng cả 2 vế với (-5)
=> 2a -5> 2b-5
c) vì a>b
Nhân cả 2 vế với 5
=> 5a>5b (1)
Vì 0> -1
Cộng cả 2 vế với 5b
=> 5b> 5b -1 (2)
Từ (1) và (2) => 5a> 5b-1
a/ a ≤ b =>-2a ≥ -2b => -2a+3 ≥ -2b+3
b/ a > b => 2a > 2b => 2a-5 > 2b-5
c/ a > b => 5a > 5b
0 > -1
=> 5a + 0 > 5b + (-1)
<=> 5a > 5b -1
Chứng minh rằng nếu các số nguyên a,b thỏa mãn điều kiện 2a2+a=3b2+b thì a-b và 2a +2b+1 là các số chính phương.
Làm nhak mk tik cko
Chứng minh rằng : nếu a , b , c là độ dài 3 cạnh tam giác thì
\(2a^2b^2+2b^2c^2+2a^2c^2-a^4-b^4-c^4>0\)
Ta có: A = a4 + b4 + c4 - 2a2b2 - 2b2c2 - 2a2c2 = (a2)2 + (b2)2 + (c2)2 + 2a2b2 - 2b2c2 - 2a2c2 + 4a2b2 = (a2 + b2 - c2)2 - 4a2b2
= (a2 + b2 - c2 - 2ab).(a2 + b2 - c2 + 2ab) (1)
Vì a; b;c là 3 cạnh của tam giác nên c > |a - b| => c2 > (|a - b|)2 = (a - b)2
=> c2 > a2 + b2 - 2ab => a2 + b2 - c2 - 2ab < 0 (2)
lại có : a+ b > c => (a+ b) 2 > c2 => a2 + b2 - c2 + 2ab > 0 (3)
Từ (1)(2)(3) => A < 0 => đpcm
Ta có: A = a4 + b4 + c4 - 2a2b2 - 2b2c2 - 2a2c2 = (a2)2 + (b2)2 + (c2)2 - 2a2b2 - 2b2c2 - 2a2c2 + 4a2b2 = (a2 + b2 - c2)2 - 4a2b2
= (a2 + b2 - c2 - 2ab).(a2 + b2 - c2 + 2ab) (1)
Vì a; b;c là 3 cạnh của tam giác nên c > |a - b| => c2 > (|a - b|)2 = (a - b)2
=> c2 > a2 + b2 - 2ab => a2 + b2 - c2 - 2ab < 0 (2)
lại có : a+ b > c => (a+ b) 2 > c2 => a2 + b2 - c2 + 2ab > 0 (3)
Từ (1)(2)(3) => A < 0 => đpcm
Chứng minh rằng nếu S = a + b + c thì :
S(S - 2b)(S -2c) + S(S-2c)(S - 2a) + S(S - 2a)(S - 2b) = (S - 2a)(S - 2b)(S -2c) + 8abc
Chứng minh rằng nếu S = a + b + c thì:
\(S\left(S-2b\right)\left(S-2c\right)+S\left(S-2c\right)\left(S-2a\right)+S\left(S-2a\right)\left(S-2b\right)=\left(S-2a\right)\left(S-2b\right)\left(S-2c\right)+8abc\)
Chứng minh rằng nếu x/ a + 2b + c = y/ 2a + b - c = z/ 4a - 4b +c thì a/x + 2y + z = b/ 2x + y -z = c / 4x -4y +z
Chứng minh rằng: Nếu x/(a+2b+c)=y/(2a+b-c)=z/(4a-4b+c) Thì a/(x+2y+z)=b/(2x+y+z)=c/(4x-4y+z)
Bạn lưu ý, gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người đọc hiểu đề của bạn hơn nhé.
Bài 1 : Phân tích đa thức thành nhân tử :
a) 3x^2 + 5x -2
b) x^2 - 10xy + 9y^2
Bài 2 : Cho hình thoi ABCD có góc B tù. Kẻ BM và BN lần lượt vuông góc với các cạnh AD, CD tại M và N, biết rằng MN / DB = 1 / 2 .Tính các góc của hình thoi ABCD.
Bài 3 : Chứng minh rằng : a. Nếu (a+b+c)^2 = 3.(ab+bc+ca) thì a = b = c.
b. Nếu 2y + 2z - x / a = 2z + 2x - y / b = 2x + 2y - z / c và (a;b;c; 2b+2c -a ; 2c+2a-b ; 2a+2b-c đều khác 0), thì x / 2b+2c-a = y / 2c+2a-b = z / 2a+2b-c.