cho x,y,z>0 thoa man x+y+z<=1 chung minh rang 17(x+y+z)+2(1/x+1/y+1/z)=>35
cho x,y,z>0 thoa man dieu kien (x+y)(y+z)(z+x)=8xyz
CM: x=y=z
(x+y)(y+z)(x+z)=8xyz
<=>\((xy+xz+y^2+yz)(x+z)=8xyz\)
<=>\(x^2y+x^2z+y^2z+xyz+xyz+xz^2+z^2y+yz^2=8xyz\)
<=> \(x^2y+x^2z+y^2x+xz^2+y^2z+yz^2-6xyz=0\)
<=> \(y(x^2+z^2-2xz)+x(y^2-2yz+z^2)+z(y^2-2yx+x^2)=0\)
<=>\(y(x-z)^2+x(y-z)^2+z(x-y)^2=0\)
Mà x,y,z dương
=> \((x-z)^2=0=>x=z\)
\((x-y)^2=0=>x=y\)
\((y-z)^2=0=>y=z\)
Vậy x=y=z
cho x, y , z la cac so nguyen thoa man x . y - x. z + y.z - z^2 +1 =0 chung minh rang x+ y =0
cho x, y , z là các số nguyen thoa man x . y - x. z + y.z - z^2 +1 =0 chung minh rang x+ y =0
cho 3 so nguyen x,y,z thoa man x+y+z=0 chung minh rang x^3+y^3+z^3= 3xyz
xét hiệu x3+y3+z3-3xyz
=(x+y)3+z3-3xy(x+y)-3xyz
=(x+y+z)3-3(x+y+z)(x+y)z-3xy(x+y+z)
=0 vì x+y+z=0
=>x3+y3+z3=3xyz
=>đpcm
Cho x, y, z thoa man
x/2= y/5= z/7(y, x, z khac 0)
Tinh
P=(x-y+z)/(x-y*z-2)
Lời giải:
Đặt $\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k$
$\Rightarrow x=2k; y=5k; z=7k$. Khi đó:
\(P=\frac{x-y+z}{x-yz-2}=\frac{2k-5k+7k}{2k-5k.7k-2}=\frac{4k}{2k-35k^2-2}\)
Giá trị này không tính đơợc cụ thể. Bạn xem lại đề.
cho x,y,z>0 thoa man x+y+z=1.CMR \(\dfrac{x^4+y^4}{x^3+y^3}+\dfrac{y^4+z^4}{y^3+z^3}+\dfrac{z^4+x^4}{z^3+x^3}\ge1\)
Bài này có đúng là của lớp 7 không bạn?
Cho x, y, z khac 0 thoa man 1/x + 1/y + 1/z = 0. Tinh P = \(\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}\)
GT \(\Leftrightarrow xy+yz+zx=0\). Khi đó: \(\left(xy\right)^3+\left(yz\right)^3+\left(zx\right)^3=3.xy.yz.zx=3x^2y^2z^2\).
Do đó: \(P=\frac{\left(xy\right)^3+\left(yz\right)^3+\left(zx\right)^3}{x^2y^2z^2}=3\)
Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)^3=-\frac{1}{z^3}\)
\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+3\cdot\frac{1}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)+\frac{1}{z^3}=0\)
\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=-3\cdot\frac{1}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)=-3\cdot\frac{1}{xy}\cdot\left(-\frac{1}{z}\right)=\frac{3}{xyz}\)
Khi đó có : \(P=\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}=xyz.\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz\cdot\frac{3}{xyz}=3\)
cho ba so x,y,z khac 0 thoa man x+y+z=2015 va 1/x+1/y+1/z=1/2015 chung minh ba so x,y,z khong ton tai 2 so doi nhau
tim cac so tu nhien x y z khac 0 thoa man dieu kien x+y+z = xyz
Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3
=> xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).
tích nha