A=52.53....58 chứng minh chia hết cho 6
bài 58: chứng minh rằng n3 - n chia hết cho 6 với mọi số nguyên n.
\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Vì \(n-1,n,n+1\) là 3 số nguyên liên tiếp nên có 1 số chia hết cho 2,1 số chia hết cho 3
Mà (2,3)=1\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮2.3=6\)
cho A=1.4.7.10.....58+3.12.21.30....174
Chứng minh A chia hết cho 377
Cho A = 2 + 22 + 23 + 24 + 25 + 26 +...+ 258 + 259 + 260. Chứng minh A chia hết cho 6.
\(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(A=6+2^2\left(2+2^2\right)+...+2^{58}\left(2+2^2\right)\)
\(A=6+2^2.6+...+2^{58}.6\)
\(A=6\left(1+2^2+...+2^{58}\right)\)
Vì \(6\left(1+2^2+...+2^{58}\right)⋮6\Rightarrow A⋮6\left(đpcm\right)\)
Gọi số cần tìm là a
Suy ra (a+2) chia hết cho cả 3,4,5,6
Vậy (a+2) là Bội chung của 3,4,5,6
=>(a+2)=60k (với k thuôc N)
vì a chia hết 11 nên
60k chia 11 dư 2
<=>55k+5k chia 11 dư 2
<=>5k chia 11 dư 2
<=>k chia 11 dư 7
=>k=11d+7 (với d thuộc N)
Suy ra số cần tìm là a=60k-2=60(11d+7)-2=660d+418 (với d thuộc N)
a) Chứng minh rằng : 10^2003 + 125 chia hết cho 45
b) Chứng minh rằng số 543 . 799 . 111 + 58 là hợp số
a/ A = 10^2003 + 125 = (10^2003 -10) + 135 Vì 135 chia hết cho 45 nên chỉ cần chứng minh B = 10^2003 - 10 chia hết cho 45
Ta có B = 10^2003 -10 =10.(10^2002 - 1) = 10.(10^1001 -1).(10^1001 + 1) = 999...90.(10^1001 + 1) chia hết cho 45 (đpcm)
Chú ý : 10^1001 - 1 = 999...9 Là số có 1001 chữ số 9
Bạn thấy thế nào với lời giải của mình?
b/ C = 543.799.111 + 58 = (60.9 + 3).(88.9 + 7).(11.9 + 2) + 58 = (9.k + 21).(11.9 + 2) + 58 = 9.m + 42 + 58 = 9.m + 90 chia hết cho 9 . Vậy C là hợp số
Ở trên mình làm vắn tắt, bạn nhân đa thức cụ thể ra nhé
Chứng minh rằng A = 2 + 2 ^ 2 + 2 ^ 3 +2 ^4 +.........+2 ^ 58 +2 ^ 59 +2 ^60
a) Chia hết cho 3
b) Chia hết cho 7
Ta có: A= 2 + 22 + 23 + ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).
= 2 x (2 + 1) + 23 x (2 + 1) + ... + 259 x (2 + 1).
= 2 x 3 + 23 x 3 + ... + 259 x 3.
= 3 x ( 2 + 23 + ... + 259).
Vì A = 3 x ( 2 + 23 + ... + 259) nên A chia hết cho 3.
A= (2 +22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260).
= 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).
= 2 x 7 + 24 x 7 + ... + 258 x 7.
= 7 x ( 2 + 24 + ... + 258).
Vì A = 7 x ( 2 + 24 + ... + 258) nên A chia hết cho 7.
Chứng minh rằng C = 5 + 5 2 + 5 3 + ... + 5 8 chia hết cho 30
Sơ đồ con đường |
Lời giải chi tiết |
|
Ta có: C = 5 + 5 2 + 5 3 + ... + 5 8 = 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + 5 7 + 5 8 = 30 + 5 2 5 + 5 2 + 5 4 5 + 5 2 + 5 6 5 + 5 2 = 30 + 5 2 5 + 5 2 + 5 4 5 + 5 2 + 5 6 5 + 5 2 = 30 + 5 2 .30 + 5 4 .30 + 5 6 .30 = 30. 1 + 5 2 + 5 4 + 5 6 Áp dụng tính chất chia hết của một tích ta có: 30 ⋮ 30 ⇒ 30. 1 + 5 2 + 5 4 + 5 6 ⋮ 30 ⇒ C = 30. 1 + 5 2 + 5 4 + 5 6 ⋮ 30 |
Chứng minh rằng C = 5 + 5 2 + 5 3 + . . . + 5 8 chia hết cho 30
Chứng minh rằng : ( 4k + 2 ).( 7k + 58 ) chia hết cho 2
Để chứng minh ( 4k + 2 ).( 7k + 58 ) chia hết cho 2
thì ta phải chứng minh 4k + 2 chia hết cho 2 hoặc 7k + 58 chia hết cho 2
Nhưng 7k + 58 là số lẻ ko chia hết cho 2
=> phải chứng minh 4k + 2 chia hết cho 2
: 4k chia hết cho 2 ; 2 chia hết cho 2 => 4k + 2 chia hết cho 2 ( đpcm ) ( 1 )
: 4k + 2 = 2.2k + 2.1 = 2( 2k + 1 ) chia hết cho 2 ( đpcm ) ( 2 )
Từ ( 1 ) ; ( 2 ) => ( 4k + 2 ).( 7k + 58 ) chia hết cho 2 ( đpcm )
Chứng minh:
A=1+4+4 mũ 2 +...+4 mũ 58+4 mũ 59 chia hết cho 85
a. A=1+4+42+43+...+458+459 chia hết cho 85
A=(1+4)(4^2+4^3)...........(4^58+4^59):5
A=(1+4)4^2(1+4)............4^58(1+4)
A=5.4^2.5.............4^58.5 chia hết cho 5
chia hết cho 85 cũng tương tự chỉ thế số thôi
+) CM chia hết cho 5
\(A=\left(1+4\right)+4^2\left(1+4\right)+....+4^{58}\left(1+4\right)\)
=> A chia hết cho 5
+) CM chia hết cho 17
\(A=\left(1+16\right)+4\left(1+16\right)+...+4^{57}\left(1+16\right)\)
=> A chia hết cho 17
Mà (5;17)=1
=> A chia hết cho 5x17=85
=> Đpcm
chuk bn hok tốt
a. A=1+4+4 2+4 3+...+4 58+4 59 chia hết cho 85
A=(1+4)(4^2+4^3)...........(4^58+4^59):5
A=(1+4)4^2(1+4)............4^58(1+4)
A=5.4^2.5.............4^58.5 chia hết cho 5 chia hết cho 85
cũng tương tự chỉ thế số thôi
Chứng minh rằng:
A=1+4+4^2+4^3+4^4+.........+4^58 Chia hết cho 21
gộp 1 tổng 3 số rồi làm nha mình ko chỉ thêm đâu