Gọi D là hình phẳng giới hạn bởi đồ thị hàm số \(y=1+\dfrac{1}{x}\), trục hoành và hai đường thẳng x = 1, x = 2 (Hình 15). Thể tích khối tròn xoay tạo thành khi quay D quanh trục Ox.
Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y = x 2 - 3 x + 2 trục hoành và hai đường thẳng x=1,x=2 Thể tích của khối tròn xoay tạo thành khi quay D quanh trục hoành bằng
A. π/30
B. π/6
C. 1/6
D. 1/30
Cho hình phẳng (D) giới hạn bởi đồ thị hàm số y = x , hai đường thẳng x = 1 , x = 2 và trục hoành. Tính thể tích V của khối tròn xoay tạo thành khi quay (D) quanh trục hoành.
A. V = 3 π 2
B. V = 3 π
C. V = 3 2
D. V = 2 π 3
Thể tích khối tròn xoay tạo thành khi quay quanh trục Ox hình phẳng giới hạn bởi đồ thị hàm số y = x e x , trục hoành, các đường thẳng x = 0 v à x = 1 là
A. V = ∫ 0 1 x e x d x
B. V = ∫ 0 1 x 2 e 2 x d x
C. V = π ∫ 0 1 x 2 e 2 x d x
D. V = ∫ 0 1 π x e x 2 d x
Cho miền phẳng (D) giới hạn bởi đồ thị hàm số y = x , hai đường thẳng x = 1 , x = 2 và trục hoành. Tính thể tích khối tròn xoay tạo thành khi quay (D) quanh trục hoành.
A. 3 π 2
B. 3 π
C. 3 2
D. 2 π 3
Đáp án D
V = π ∫ a b y 2 d x = π ∫ 1 2 x d x = π x 2 2 1 2 = 3 π 2
Cho miền phẳng (D) giới hạn bởi đồ thị hàm số y = x , hai đường thẳng x = 1, x = 2 và trục hoành. Tính thể tích khối tròn xoay tạo thành khi quay (D) quanh trục hoành.
A. 3 π 2
B. 3π
C. 3 2
D. 2 π 3
Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y = x 2 - 4 , trục Ox, đường thẳng x=3. Tính thể tích khối tròn xoay tạo thành khi quay hình phẳng (H) quanh trục hoành
Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y = x 2 - 4 , trục Ox, đường thẳng x=3. Tính thể tích khối tròn xoay tạo thành khi quay hình phẳng (H) quanh trục hoành.
Phương pháp:
- Tìm nghiệm của phương trình hoành
độ giao điểm.
- Sử dụng công thức tính thể tích
Cách giải:
Xét phương trình hoành độ giao điểm
Thể tích khối tròn xoay tạo thành
khi quay (H) quanh Ox là:
Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y = x 2 - 4 , trục Ox, đường thẳng x = 3 . Tính thể tích khối tròn xoay tạo thành khi quay hình phẳng (H) quanh trục hoành
A. V = 7 π 3 (đvtt)
B. V = 5 π 3 (đvtt)
C. V = 2 π (đvtt)
D. V = 3 π (đvtt)
Cho hàm số y = f x liên tục trên 3 ; 4 . Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y = f x , trục hoành và hai đường thẳng x = 3 , x = 4 . Thể tích khối tròn xoay tạo thành khi quay D quanh trục hoành được tính theo công thức.
A. V = π ∫ 3 4 f 2 x d x .
B. V = π 2 ∫ 3 4 f 2 x d x .
C. V = ∫ 3 4 f x d x .
D. V = ∫ 3 4 f 2 x d x .
Đáp án A
Thể tích khối tròn xoay tạo thành khi quay D
quanh trục hoành là: V = π ∫ 3 4 f 2 x d x .
Cho hàm số y = f(x) liên tục trên đoạn [a;b] Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y = f(x) trục hoành và hai đường thẳng x =a; x=n Thể tích của khối của khối tròn xoay tạo thành khi quay D quanh trục hoành được tính theo công thức: