Tìm các số nguyên tố x,y,z thỏa mãn đẳng thức :x^y+1=z
Tìm ba số nguyên tố x,y,z thỏa mãn đẳng thức: xy+1=z
help
Ta thấy nếu x lẻ => VT chẵn => z chẵn ko phải số nguyên tố
Vậy x chỉ là số chẵn mà nguyên tố => x= 2
Với y=2 => z= 5 thỏa đk đề bài
Nếu y>2 => y lẻ (vì y nguyên tố)
=> y =2k +1
=> 2^(2k+1) +1 = 2.4^k + 1 = 2.(3p+1) + 1 = 3m
Như vậy khi x=2 và y nguyên tố > 2 thì VT luôn chia hết cho 3
=>z chia hết cho 3 không thỏa đk
Vậy x=y=2; z= 5 là duy nhất
Trả lời
Ta thấy nếu x lẻ => VT chẵn => z chẵn ko phải số nguyên tố
Vậy x chỉ là số chẵn mà nguyên tố => x= 2
Với y=2 => z= 5 thỏa đk đề bài
Nếu y>2 => y lẻ (vì y nguyên tố)
=> y =2k +1
=> 2^(2k+1) +1 = 2.4^k + 1 = 2.(3p+1) + 1 = 3m
Như vậy khi x=2 và y nguyên tố > 2 thì VT luôn chia hết cho 3
=>z chia hết cho 3 không thỏa đk
Vậy x=y=2; z= 5 là duy nhất
Với x=2; y=5 thì 2^5 + 1 =33 đâu phải số nguyên tố....
xy+1=zxy+1=z, ⇒z>2⇒z>2 ⇒z⇒z lẻ ⇒xy+1⇒xy+1 lẻ ⇒x⇒x chẵn ⇒x=2⇒x=2
Với y=2y=2: ⇒z=5⇒z=5 (thỏa mãn)
Với y>2y>2: 2y+1⋮2+1⇔z⋮32y+1⋮2+1⇔z⋮3 vì zz là số nguyên tố lớn hơn 33 mà z⋮3z⋮3 nên trường hợp này không tồn tại x,y,zx,y,z thỏa mãn đề bài (2y+1⋮2+12y+1⋮2+1 vì yy lẻ)
Vậy (x,y,z)(x,y,z)=(2,2,5)
Chứng minh rằng tồn tại các số nguyên x,y,z thỏa mãn đẳng thức xx+yy=zp với p là một số nguyên tố lẻ
Chứng minh rằng tồn tại các số nguyên x,y,z thỏa mãn đẳng thức xx+yy=zp với p là một số nguyên tố lẻ
Chứng minh rằng tồn tại các số nguyên x,y,z thỏa mãn đẳng thức xx+yy=zp với p là một số nguyên tố lẻ
Tìm các số x,y,z nguyên dương thỏa mãn đẳng thức:\(2\left(y+z\right)=x\left(yz-1\right)\)
Tìm các số x,y,z nguyên dương thỏa mãn đẳng thức:\(2\left(y+z\right)=x\left(yz-1\right)\)
Tìm các số nguyên tố x,y,z thỏa mãn x^y+1=z
Tìm các số nguyên tố x,y,z thỏa mãn x^y=z-1
Do các số nguyên tố đều lớn hơn 1
\(\Rightarrow x^y>1\Rightarrow z-1>1\Rightarrow z>2\Rightarrow z\) lẻ
\(\Rightarrow z-1\) chẵn
\(\Rightarrow x^y\) chẵn \(\Rightarrow x\) chẵn \(\Rightarrow x=2\)
Pt trở thành: \(2^y=z-1\Rightarrow z=2^y+1\)
- Với \(y=2\Rightarrow z=5\) là SNT (thỏa mãn)
- Với \(y>2\Rightarrow y\) lẻ, đặt \(y=2k+1\) với \(k\ge1\)
\(\Rightarrow z=2^{2k+1}+1=2.4^k+1\)
Hiển nhiên \(z>3\), đồng thời do \(4\equiv1\left(mod3\right)\Rightarrow4^k\equiv1\left(mod3\right)\Rightarrow2.4^k\equiv2\left(mod3\right)\)
\(\Rightarrow2.4^k+1\equiv0\left(mod3\right)\)
\(\Rightarrow z⋮3\) mà \(z>3\Rightarrow z\) là hợp số (ktm)
Vậy \(\left(x;y;z\right)=\left(2;2;5\right)\)
Tìm các số x,y,z nguyên dương thỏa mãn đẳng thức:
\(2\left(y+z\right)=x\left(yz-1\right)\)
ta có:2(y+z)=x(yz-1)
=>2y+2z=xyz-x
=>2y+2z+x=xyz
mik ko làm tiếp đc do thiếu đ/k