Tính diện tích hình phẳng giới hạn bởi các đường y = ex, y = x, x = 0 và x = 1.
Tính diện tích S của hình phẳng giới hạn bởi các đường y = e x , y = 2 , x = 0 và x = 1.
A. S = 4 ln 2 + e - 5
B. S = 4 ln 2 + e - 6
C. S = e 2 - 7
D. S = e - 3
Đáp án A
Phương trình hoành độ giao điểm e x = 2 ⇔ x = ln 2
Suy ra diện tích cần tìm bằng S = ∫ 0 ln 2 e x - 2 d x + ∫ ln 2 0 e x - 2 d x = 4 ln 2 + e - 5 .
Tính diện tích S của hình phẳng giới hạn bởi các đường y = e x , y = 2 , x = 0 , x = 1 .
A. S = 4 ln 2 + e - 5
B. S = 4 ln 2 + e - 6
C. S = e 2 - 7
D. S = e - 3
Tính diện tích S của hình phẳng giới hạn bởi các đường y = e x , y = e - x , x = 1 .
A. S = e + 1 2 - 2
B. S = e - 1 e - 2
C. S = e + 1 e
D. S = e + 1 e - 2
Tính diện tích S của hình phẳng giới hạn bởi các đường y = ex, y = e–x, x = 1.
A. S = e + 1 2 - 2
B. S = e - 1 e - 2
C. S = e + 1 e
D. S = e + 1 e - 2
Tính diện tích hình phẳng giới hạn bởi : Đồ thị hàm số y = e x +1 , trục hoành , đường thẳng x = 0 và đường thẳng x = 1
A.e
B. 2+e
C.e-1
D.2e+1
Tính diện tích hình phẳng giới hạn bởi đồ thị các hàm số y = e x ; y = 2 và đường thẳng x =1
A.e-2
B.2ln2-4
C.e+2ln2
D.e+2ln2-4
Chọn D.
Giải PT : e x = 2 ⇔ x = ln 2 Diện tích hình phẳng cần tìm là :
Diện tích hình phẳng giới hạn bởi các đường y = e x ; y = 1 v à x = 1 là
A. e - 2.
B. e.
C. e + 1.
D. 1 - e.
Chọn A.
Phương trình hoành độ giao điểm của hai đồ thị hàm số y = ex và trục y = 1 là: ex = 1 ⇔ x = 0
Do đó:
Tính diện tích hình phẳng giới hạn bởi các đường y = ( e + 1 ) x y = ( e x + 1 ) x Chọn đáp án đúng:
Hoành độ giao điểm của hai đường là nghiệm của phương trình
Chọn D.
Diện tích S của hình phẳng giới hạn bởi đồ thị các hàm số y =x và y = ex, trục tung và đường thẳng x=1 được tính theo công thức
A. S = ∫ 0 1 e x - 1 d x
B. S = ∫ - 1 1 e x - 1 d x
C. S = ∫ 0 1 x - e x d x
D. S = ∫ - 1 1 e x - x d x
Đáp án A
Xét hàm số f(x) = ex – x, hàm số liên tục trên đoạn [0;1]
Ta có => f(x) đồng biến trên [0;1]
Suy ra
=> S = ∫ 0 1 e x - 1 d x
Diện tích S của hình phẳng giới hạn bởi đồ thị các hàm số y = x và y = e x , trục tung và đường thẳng x=1 được tính theo công thức