Tìm GTNN ( GTLN )
E = \(\frac{6.\left|x+5\right|+14}{3.\left|x+5\right|+6}\)
TÌM GTLN HOĂC GTNN :
A = | 4x - 3 | + | 5y + 7,5 | + 10
B = \(\frac{5,8}{\left|2,5-x\right|+5,8}\)
C = 2 + \(\frac{12}{3\left|x+5\right|+4}\)
D = 6 - \(\frac{10}{5\left|6y-8\right|+1}\)
E = - 6 +\(\frac{24}{2\left|x-2y\right|+3\left|2x+1\right|}\)
GIẢI GIÚP MK NHÉ ! LÀM ĐC PHẦN NÀO THÌ LÀM !
\(A=\left|4x-3\right|+\left|5y+7,5\right|+10\)
Mà \(\left|4x-3\right|\ge0\)với mọi x
\(\left|5y+7,5\right|\ge0\)với mọi y
\(\Rightarrow A\)có GTNN là 10
Để A có GTNN thì :
\(4x-3=0\) \(5y+7,5=0\)
\(4x=3\) \(5y=-7,5\)
\(x=\frac{3}{4}\) \(y=-1,5\)
\(B=\frac{5,8}{\left|2,5-x\right|+5,8}\)
Mà \(\left|2,5-x\right|\ge0\)
\(\Rightarrow\)GTNN \(\left|2,5-x\right|+5,8=5,8\)
Để B có GTLN \(\Rightarrow2,5-x=0\)
\(\Rightarrow x=2,5\)
Tìm x để:
A=\(\left(x-\frac{5}{6}\right)^2+\left(xy-\frac{1}{4}\right)^4-85\) có GTNN
B=\(-5\left(3x-2\right)^4+\left(-\left(x+2y\right)^2\right)\)có GTLN
Tìm GTLN (giá trị lớn nhất) hoặc GTNN(giá trị nhỏ nhất)của:
D=\(\frac{\left|x\right|-2}{\left|x\right|+5}\)
E=\(\frac{3.\left|x\right|+2}{2.\left|x\right|-5}\)
GIÚP MK VS MK ĐANG CẦN RẤT GẤP!
sau 3 phút có kết quả tuy bạn http://olm.vn/hoi-dap/question/772291.html
Tìm :
a) GTLN của biểu thức A=\(\frac{6}{3\left|x-14\right|+4}\)
b) GTNN của biểu thức B=\(\left|2x+6\right|+2+2x\)
a) Ta có: 3|x - 14| \(\ge\)0 \(\forall\)x
=> 3|x - 14| + 4 \(\ge\)4 \(\forall\)x
=> \(\frac{6}{3\left|x-14\right|+4}\le\frac{3}{2}\forall x\)
Dấu "=" xảy ra <=> x - 14 = 0 <=> x = 14
Vậy MaxA = 3/2 <=> x = 14
b) Mình có: |2x + 6| = \(\orbr{\begin{cases}2x+6\\-2x-6\end{cases}}\)\(\Rightarrow\)BMin = - 2x- 6 + 2 + 2x = -4 khi x \(\le\)-3
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
Cho biểu thức \(M=\left(1-\frac{6-2x^3}{x^6-9}\right).\frac{4}{x^5+3x^2}:\left(\frac{6x^6-24}{x^9+6x^6+9x^3}:\left(\frac{3x^2}{2}+\frac{3}{x}\right)\right)\)
a/ Rút gọn M
b/ Tìm các giá trị nguyên của x để M đạt GTLN. Tìm GTLN đó
Bài 1 Tìm GTLN của
D=\(\dfrac{2}{3}+\dfrac{21}{\left(x+3y\right)^2+5\left|x+5\right|+14}\)
\(E=-6+\dfrac{24}{2\left|x-2y\right|+3\left|2x+1\right|+6}\)
\(F=\dfrac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\)
ai làm dùm tôi thì làm đi. Ngồi đó kêu dễ.
Mk ms làm xong có câu D ak Mashiro Shiina
Làm mk 2 câu còn lại đi Mashiro Shiina