Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Fenny
Xem chi tiết
Xyz OLM
28 tháng 9 2020 lúc 11:30

a) Ta có \(\left|x-4\right|\ge0\forall x\Rightarrow A=7+\left|x-4\right|\ge7\forall x\)

Dấu "=" xảy ra <=> x - 4 = 0

=> x = 4

Vậy Min A = 7 <=> x = 4

b) Ta có : \(\left|2-3x\right|\ge0\forall x\Rightarrow B=\left|2-3x\right|-\frac{1}{5}\ge-\frac{1}{5}\forall x\)

Dấu "=" xảy ra <=> 2 - 3x = 0

=> 3x = 2

=> x = 2/3

Vậy Min B = -1/5 <=> x = 2/3

c) Ta có \(\left|\frac{1}{2}-5x\right|\ge0\forall x\Rightarrow C=7-\left|\frac{1}{2}-5x\right|\le7\forall x\)

Dấu "=" xảy ra <=> 1/2 - 5x = 0

=> x = 1/10 

Vậy Max C = 7 <=> x = 1/10

Khách vãng lai đã xóa
Nguyen Thanh Tung
Xem chi tiết
Nguyen Thanh Tung
Xem chi tiết
Nguyễn Bá Thọ
Xem chi tiết
Nguyen Thanh Tung
Xem chi tiết
Nguyen Thanh Tung
Xem chi tiết
Thành TrầnĐình
Xem chi tiết
Trương Thị Hiếu
26 tháng 1 2015 lúc 18:27

4. A=7-x/x-5=(-(x-5)+2)/x-5=-1+2/x-5

A nhỏ nhất khi 2/x-5 nhỏ nhất.mà 2/x-5 nho nhất khi x-5 lớn nhất(a)

TH1: x-5>0=>x>5=>2/x-5>0(1)

Th2:x-5<0=>x<5=>2/x-5<0(2)

(1), (2)=>x-5<0(b)

(a),(b)=>x-5=-1=>x=4

vậy A nhỏ nhất là -3

 

Trần Thế Văn
Xem chi tiết
Nguyễn Phương Uyên
16 tháng 9 2019 lúc 20:27

\(\left|5x-4\right|=\left|x+2\right|\)

\(\Rightarrow\orbr{\begin{cases}5x-4=x+2\\5x-4+x+2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}5x-x=2+4\\6x-2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}4x=6\\6x=2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{3}\end{cases}}\)

b tương tự

Trần Tiến Pro ✓
16 tháng 9 2019 lúc 20:39

\(\left|5x-4\right|=\left|x+2\right|\)

\(\Rightarrow\orbr{\begin{cases}5x-4=x+2\\5x-4=-\left(x+2\right)\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}5x-x=4+2\\5x-4=-x-2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}4x=6\\5x+x=4-2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{6}{4}\\6x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{2}{6}=\frac{1}{3}\end{cases}}\)

\(\text{b) }\left|2+3x\right|=\left|4x-3\right|\)

\(\Rightarrow\orbr{\begin{cases}2+3x=4x-3\\2+3x=-\left(4x-3\right)\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}-4x+3x=-2-3\\2+3x=-4x+3\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}-1x=-5\\4x+3x=-2+3\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=5\\7x=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=\frac{1}{7}\end{cases}}\)

ỉn2k8>.
Xem chi tiết
Nguyễn Ngọc Lộc
29 tháng 6 2021 lúc 8:26

Bài 2 :

\(A=4x^2-2.2x.2+4+1\)

\(=\left(2x-2\right)^2+1\)

Thấy : \(\left(2x-2\right)^2\ge0\)

\(A=\left(2x-2\right)^2+1\ge1\)

Vậy \(MinA=1\Leftrightarrow x=1\)

\(B=\left(5x\right)^2-2.5x.1+1-4\)

\(=\left(5x-1\right)^2-4\)

Thấy : \(\left(5x-1\right)^2\ge0\)

\(\Rightarrow B=\left(5x-1\right)^2-4\ge-4\)

Vậy \(MinB=-4\Leftrightarrow x=\dfrac{1}{5}\)

\(C=\left(7x\right)^2-2.7x.2+4-5\)

\(=\left(7x-2\right)^2-5\)

Thấy : \(\left(7x-2\right)^2\ge0\)

\(\Rightarrow C=\left(7x-2\right)^2-5\ge-5\)

Vậy \(MinC=-5\Leftrightarrow x=\dfrac{2}{7}\)

missing you =
29 tháng 6 2021 lúc 8:33

\(1.\)

\(A=-x^2-10x+1=-\left(x^2+10x-1\right)\)

\(=-\left(x^2+2.5x+5^2-5^2-1\right)=-\left[\left(x+5\right)^2-26\right]\)

\(=-\left(x+5\right)^2+26\le26\) dấu "=" xảy ra<=>x=-5

\(B=-4x^2-6x-5=-4\left(x^2+\dfrac{6}{4}x+\dfrac{5}{4}\right)\)

\(=-4\left(x^2+2.\dfrac{3}{4}x+\dfrac{9}{16}+\dfrac{11}{16}\right)\)\(=-4\left[\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{6}\right]\le-\dfrac{11}{4}\)

\(C=-16x^2+8x-1=-16\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)\)

\(=-16\left(x^2-2.\dfrac{1}{4}x+\dfrac{1}{16}\right)=-16\left(x-\dfrac{1}{4}\right)^2\le0\)

dấu"=" xảy ra<=>x=1/4