stn a chia cho 27 ta dư 12 tìm stn a
tìm stn bé nhất biết a chia 12 dư 10;a chia 18 dư 16;a chia 27 dư 25
Bài 1 : Chứng minh rằng số gồm 27 chữ số 1 thì chia hết cho 27.
Bài 2 : Cho A = 13! - 11!
A có chia hết cho 2 ; cho 5 và cho 155 hay không ?
Bài 3 : Tìm các STN chia cho 4 thì dư 1 , chia cho 25 thì dư 3.
Bài 4 : Tìm các STN chia cho 8 thì dư 3 , chia cho 125 thì dư 12.
Đặt A = 1111....1111 (27 chữ số 1)
A=111...100...0( 9 c/s 1 và 18 c/s 0) +111...100...0(9c/s 1 và 9 c/s 0) + 111...1(9 c/s 1)
= 111...1 . 1018 + 111...1 . 109 + 111...1
= 111...1 .(1018 + 109 + 1)
Vì 111...1 có 9 c/s 1 nên tổng các c/s chia hết cho 9 \(\Rightarrow111...1⋮9\)
và (1018 + 109 + 1) chia hết cho 3 ( có tổng các c/s chia hết cho 3)
nên A= 9.k.3.k'=27.k.k' chia hết cho 27 (đpcm)
Khi chia stn a cho 18 thì đc dư là 12.Tìm số dư khi stn a chia cho 6;9
Bài làm :
Số tự nhiên a chia cho 18 được số dư là 12.
1) 18 chia hết cho 6, và 12 chia hết cho 6, nên số a chia hết cho 6.
2) 18 chia hết cho 9, nhưng 12 không chia hết cho 9, nên số a không chia hết cho 9.
Câu 1: Tích của 4 stn liên tiếp là 2024.tìm4 stn đó
Câu2:khi chia stn a cho 54 ta được số dư là 38.chia số a cho 18 ta được thương là 14 và còn dư tìm a
Câu3:ko chia hết cho 3.khi chia cho 3 được các số dư khác nhau.Chứng tỏ tổng 2 số đó chia hết cho 3
1, Khi chia một STN a cho 4, ta được số dư là 3 còn khi chia cho 9 ta được số dư là 5. Tìm số dư trong phép chia a cho 36
2, Khi chia một STN a cho một STN b ta được thương là 18 số dư là 24. Hỏi thương và số dư thay đổi thế nào thì SBC và SC giảm đi 6 lần
3, Tìm số dư trong phép chia sau:
\(a,2^{1000}:5\)
\(b,2^{1000}:25\)
Bài 1:
Theo đề bài ta có:
\(a=4q_1+3=9q_2+5\) (\(q_1\) và \(q_2\) là thương trong hai phép chia)
\(\Rightarrow\left[\begin{matrix}a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\\a+13=9q_2+5+13=9\left(q_2+2\right)\left(2\right)\end{matrix}\right.\)
Từ (1) và (2) suy ra: \(a+13=BC\left(4;9\right)\)
Mà \(Ư\left(4;9\right)=1\Rightarrow a+13=BC\left(4;9\right)=4.9=36\)
\(\Rightarrow a+13=36k\left(k\ne0\right)\)
\(\Rightarrow a=36k-13=36\left(k-1\right)+23\)
Vậy \(a\div36\) dư \(23\)
Câu 1
Theo bài ra ta có:
\(a=4q_1+3=9q_2+5\)(q1 và q2 là thương của 2 phép chia)
\(\Rightarrow a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\)
và \(a+13=9q_2+5+13=9.\left(q_2+2\right)\left(2\right)\)
Từ (1) và (2) ta có \(a+13\) là bội của 4 và 9 mà ƯC(4;9)=1
nên a là bội của 4.9=36
\(\Rightarrow a+13=36k\left(k\in N\right)\)
\(\Rightarrow a=36k-13\)
\(\Rightarrow a=36.\left(k-1\right)+23\)
Vậy a chia 36 dư 23
Bài 3:
\(a,2^{1000}\div5\)
Ta có:
\(2^{1000}=\left(2^4\right)^{250}=\overline{\left(...6\right)}^{250}=\overline{\left(...6\right)}\)
Vì a có tận cùng là 6
\(\Rightarrow2^{1000}\div5\) dư \(1\)
Chia STN a cho 12 dư 2
chia STN b cho 9 dư 1
Chứng minh (a+b) chia hết cho 3
mi tích tau tau tích mi xong tau trả lời nka
việt nam nói là làm
1.STN nhỏ nhất chia cho 6 dư 5 nhưng chia cho 19 dư 2
a) Tìm STN nhỏ nhất có tính chất trên.
b) Tìm dạng tổng quát của các STN có tính chất trên
2. Một STN chia cho 5 dư 1, chia cho 21 dư 3
a) Tìm STN nhỏ nhất có tính chất trên.
b) Hỏi số đó chia cho 105 dư bao nhiêu?
c) Số đó chia cho 35 dư bao nhiêu?
a, Vì số đó chia cho 6 dư 5; chia 19 dư 2 nên khi ta thêm vào số đó 55 đơn vị thì trở thành số chia hết cho cả 6 và 19
Ta có: \(\left\{{}\begin{matrix}a+55⋮6\\a+55⋮19\end{matrix}\right.\) ⇒ a + 55 \(\in\) BC(6; 19)
6 = 2.3; 19 = 19; BCNN(6; 19) = 2.3.19 = 114
⇒ BC(6; 19) = {0; 114; 228; 342;...;}
a \(\in\) { - 55; 59; 173;...;}
Vì a là số tự nhiên nhỏ nhất nên a = 59
a + 55 \(\in\) B(114)
⇒ a = 114.k - 55 (k ≥1; k \(\in\) N)
Bài 2:
Vì số đó chia 5 dư 1 chia 21 dư 3 nên khi số đó thêm vào 39 đơn vị thì trở thành số chia hết cho cả 5 và 21
Ta có: a + 39 ⋮ 5; a + 39 ⋮ 21 ⇒ a + 39 \(\in\) BC(5; 21)
5 = 5; 21 = 3.7 BCNN(5; 21) = 3.5.7 = 105
⇒BC(5; 21) = {0; 105; 210;...;}
a+ 39 \(\in\) {0; 105; 210;...;}
a \(\in\) {-39; 66; 171;...;}
Vì a là số tự nhiên nhỏ nhất nên a = 66
a + 39 ⋮ 105
⇒ a = 105.k - 39 (k ≥1; k \(\in\) N)
Bài 2, ý b
66 : 105 = 0 dư 66
Vậy số đó chia 105 dư 66
66 : 35 = 1 dư 31
Vậy số đó chia 35 dư 31
Tìm STN a biết a chia 27 dư 8, a chia 15 dư 5.mk cần gấp giúp mk vơi nhé
1.Tìm số tự nhiên a , biết rằng 130 chia cho a dư 10 và 172 chia cho a dư 12.
2.Tìm stn a , biết rằng 156 chia a dư 12 và 280 chia a dư 10.
2.
Vì 156 chia cho a dư 12 nên a là ước của 156 - 12 = 144.
Vì 280 chia cho a dư 10 nên a là ước của 280 - 10 = 270.
Vậy a ∈ ƯC(144, 270) và a > 12.
* Ta có; 144 = 24.32 và 270 = 2.33.5Nên ƯCLN (144; 270)= 2.32 = 18
⇒ ƯC(144; 270) = {1; 2; 3; 6; 9; 18}
Kết hợp a > 12 nên a = 18.