Cho 3 số a,b,c khác nhau và khác 0 thõa mãn điều kiện : \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Tính giá trị của biểu thức : \(P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)
Cho 3 số a,b,c khác 0 và a + b + c khác 0 thõa mãn điều kiện : \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Tính giá trị của biểu thức :
P = \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)
Cho 3 số a, b, c khác 0 và khác nhau thỏa mãn điều kiện\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
Tính giá trị của biểu thức P= \(\frac{a+b}{c}+\frac{c+a}{b}+\frac{b+c}{a}\)
học tính chất của dãy tỉ số bằng nhau chưa?
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}2a=b+c\\2b=a+c\\2c=a+b\end{cases}}\Rightarrow\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=2\)
Vậy \(P=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=2+2+2=6\)
Cho 3 số a,b,c khác nhau và khác 0 thỏa mãn điều kiện: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Tính giá trị của biểu thức: P =\(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}\)
Vì \(a,b,c\ne0\)
\(\Rightarrow\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=2\)
\(\Rightarrow P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)
Ta có : \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
=> \(\frac{a}{b+c}+1=\frac{b}{a+c}+1=\frac{c}{a+b}+1\)
=> \(\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)
Nếu a + b + c = 0
=> a + b = - c
=> b + c = - a
=> a + c = - b
Khi đó P = \(\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=-1+\left(-1\right)+\left(-1\right)=-3\)
Nếu a + b + c \(\ne0\)
=> \(\frac{1}{b+c}=\frac{1}{a+c}=\frac{1}{a+b}\)
=> b + c = a + c = a + b
=> \(\hept{\begin{cases}b+c=a+c\\b+c=a+b\end{cases}\Rightarrow\hept{\begin{cases}a=b\\a=c\end{cases}}\Rightarrow a=b=c}\)
Khi đó P = \(\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)
=> P = 6
Vậy khi a + b + c = 0 => P = -3
khi a + b + c \(\ne0\) => P = 6
Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
+) \(\frac{a}{b+c}=\frac{1}{2}\Rightarrow2a=b+c\)
+) \(\frac{b}{a+c}=\frac{1}{2}\Rightarrow2b=a+c\)
+) \(\frac{c}{b+a}=\frac{1}{2}\Rightarrow2c=a+b\)
\(\Rightarrow P=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)
Cho 3 số a,b,c khác nhau đôi một và khác 0,đồng thời thỏa mãn điều kiện \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\).Tính giá trị biểu thức A=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
xét a + b + c = 0 khi đó a + b = -c ; b + c = -a ; a + c = -b
Ta có : \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{\left(-a\right)\left(-b\right)\left(-c\right)}{abc}=-1\)
xét a + b + c \(\ne\)0 . thì \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow a+b=2c;b+c=2a\)\(\Rightarrow a-c=2\left(c-a\right)\)\(\Rightarrow a=c\)( loại vì a khác c )
Vậy A = -1
Cho 3 số a,b,c khác nhau và khác 0(b+c,a+c,a+b \(\ne\)0).Thỏa mãn điều kiện \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\).Tính giá trị biểu thức P=\(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}\)
Cho a,b,c là ba số thực khác 0 , thõa mãn điều kiện : \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
Hãy tính giá trị biểu thức \(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\Rightarrow2+\frac{a+b-c}{c}=2+\frac{b+c-a}{a}=2+\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)(ĐK:a,b,c khác 0)
TH1: a+b+c=0=> a=-(b+c)=> b=-(a+c)=> c=-(a+b)
\(\Rightarrow B=\left(\frac{a-a-c}{a}\right)\left(\frac{c-b-c}{c}\right)\left(\frac{b-a-b}{b}\right)=\frac{-c}{a}.\left(-\frac{b}{c}\right).\left(-\frac{a}{b}\right)=-1\)
xét a+b+c khác 0
=> a=b=c
=> \(B=\left(1+\frac{a}{a}\right).\left(1+\frac{b}{b}\right).\left(1+\frac{c}{c}\right)=2^3=8\)
Vậy B=-1 hay B=8
p/s: bài này gây khá nhiều tranh cãi :>
3 số a,b,c khác nhau và khác 0 thỏa mãn điều kiện: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
tìm giá trị biểu thức \(P=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow P=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow P=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)
vậy \(P=\frac{3}{2}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có;
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2\left(a+b+c\right)}\)
=\(\frac{1}{2}\)
suy ra :
\(P=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)
cho a,b,c khác nhau và khác 0 thỏa mãn điều kiện
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
Tính giá trị của biểu thức A=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
giải giúp mk vs ạ
Cho a,b,c khác nhau và khác 0 thỏa mãn a + b + c =0 . Tính giá trị của biểu thức
P = \((\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b})(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a})\)