1. Một số sách nếu xếp thành từng bó 10 quyển, hoặc 12 quyển, hoặc 15 quển đều vừa đủ bó. Tìm số sách đó, biết rằng số sách trong khoảng 100 đến 150
Một số sách nếu xếp thành từng bó 10 quyển ,12 quyển hoặc 15 quển đều vừa đủ bó . Tính số sách đó biết rằng số sách trong khoảng từ 100 đến 150 quyển.
Một số sách nếu xếp thành từng bó 10 quyển ,12 quyển hoặc 15 quển đều vừa đủ bó . Tính số sách đó biết rằng số sách trong khoảng từ 100 đến 150 quyển.
Bó đủ số sách thành 10 , 12 , 15 bó được có nghĩa là số sách chia hết được cho ba số trên
Ta có
Gọi số sách cần tìm là a ( a ∈ N ; a ≠ 0 )
Ta có :
Gọi số sách đó là a , ta có
a ⋮ 10,a ⋮ 12,a ⋮ 15 và 100<a<150 ⇒ a ϵ BC(10,12,15)
10=2.5
12=2.2.3
15=3.5
BCNN(10,12,15)=2.2.3.5=60
BC(10,12,15)=B(60)={0;60;120;180;...}
Vì a ϵ BC(10,12,15) và 100 < a < 150 nên a = 120
Vạy số sách đó là 120 quyển
k cho mk nha
Gọi số sách cần tìm là x ( x thuộc N )
Theo đề bài : x quyển sách xếp bó 10 quyển, 12 quyển, 15 quyển thì vừa đủ
=> x chia hết cho 10, chia hết cho 12, chia hết cho 15
=> x thuộc BC(10, 12, 15) và 100 < x < 150
10 = 2 . 5
12 = 22 . 3
15 = 3 . 5
=> BCNN(10, 12, 15) = 22 . 3 . 5 = 60
BC(10, 12, 15) = B(60) = { 0 ; 60 ; 120 ; 180 ; ... }
Vì 100 < x < 150
=> x = 120
Vậy số sách đó = 120 quyển
Gọi số sách là a. ta có: \(a⋮10;a⋮12;a⋮15\) (100 ≤ a ≤ 150)
=> a ∈ BC (10,12,15)
Ta có:10=2.5; 12=22.3,
15=3.5
=> BCNN(10,12,15)=22.3.5=60
=> BC(10,12,15)={0;60;120;240;...}
mà 100 ≤ a ≤ 150
=> a=120
Vậy...
Một số sách xếp thành từng bó 10 quyển, hoặc 12 quyển, hoặc 15 quyển đều vừa đủ bó. Tìm số sách đó, biết rằng số sách trong khoảng từ 100 đến 150.
120
tìm BC (10,12,15) các sô nằm trong khoảng 100 đến 150 chỉ có 120 thỏa mãn
Từ đề bài, suy ra số sách thuộc BC(10;12;15).
Mà 10=2×5; 12=22×3; 15=3×5, suy ra BCNN(10;12;15)=22×3×5=60
Suy ra, BC(10;12;15)€{0;60;120;180;....}
Mà số sách dó từ khoảng 100 đến 150 nên số sách đó là 120 quyển.
Một sách nếu xếp thành từng bó 10 quyển. 12 quyển hoặc 15 quyển đều vừa đủ bó. Tính số sách đó biết rằng số sách trong khoảng từ 100 đến 150.
Một sách nếu xếp thành từng bó 10 quyển. 12 quyển hoặc 15 quyển đều vừa đủ bó
=> Số sách là BC(10; 12; 15)
Cod:
10 = 2.5
12 = 22.3
15 = 3.5
=> BCNN(10; 12; 15) = 22.3.5 = 60
=> Số sách thuộc B(60)
Mà số sách trong khoảng từ 100 đến 150
=> Số sách là 120 quyển
Gọi số sách là a ta có:
Từ đề => a chia hết cho 10;12;15
=> a \(\in\) BC(10 ; 12 ; 15)
10 = 2.5 ; 12 = 2^2.3 ; 15 = 3.5
=> BCNN(10;12;15) = 2^2.3.5 = 60
B(60) = {0;60;120;180;...}
Mà 100 \(\le a\le\) 150
Do đó a = 120
Vậy số sách cần tìm là 120 cuốn
Một số sách nếu xếp thành từng bó 10 quyển , 12 quyển hoặc 15 quyển đều vừa đủ bó . Tính số sách đó biết rằng số sách trong khoảng 100 đến 150
Một số sách nếu xếp thành từng bó 10 quyển, 12 quyển hoặc 15 quyển đều vừa đủ bó. Tính số sách đó biết rằng số sách trong khoảng từ 100 đến 150 ?
Gọi số sách cần tìm là a ( 100\(\le\) a \(\le\) 150)
Theo đề bài, ta có: a\(⋮\) 10 ; a\(⋮\) 12; a \(⋮\) 15
\(\Rightarrow\) a \(\in\) BC( 10; 12; 15)
Ta có: 10=2.5 ; 12=22 . 3 ; 15=3. 5
BCNN( 10; 12; 15) = 22. 3. 5= 60
BC (10; 12; 15) = B(60) = \(\left\{0;60;120;180;...\right\}\)
Vì 100\(\le\) a \(\le\) 150 nên a = 120
Vậy : số sách đó là 120 quyển
Gọi số sách là a(quyển, a \(\in\) N*)
Theo đề bài, số sách nếu xếp thành từng bó 10 quyển, 12 quyển hoặc 15 quyển đều vừa đủ \(\Rightarrow\)a ⋮10;12;15
\(\Rightarrow\)a ∈BC(10,12,15)
Ta có:
10= 2.5 ; 12= 22.3 ; 15 =3.5
\(\Rightarrow\) BCNN(10,12,15)=22.3.5 = 60
\(\Rightarrow\) BC(10,12,15)={0;60;120;180;...)
Do số sách trong khoảng từ 100 đến 150
\(\Rightarrow\) Số sách là 120 quyển sách.
Vậy số sách là 120 quyển sách.
- Phân tích: 10 = 2.5 12 = 22.3 15 = 3.5
- Chọn thừa số chung, riêng: đó là 2, 3, 5
- Số mũ lớn nhất của 2 là 2, của 3 và 5 là 1
=> BCNN(10, 12, 15) = 22.3.5 = 60
Do đó BC(10, 12, 15) = {0, 60, 120, 180, ...}
Theo đề bài, số sách trong khoảng từ 100 đến 150 (tức là 100 < số sách < 150) nên số sách = 120 (quyển).
Một số sách nếu xếp thành từng bó 10 quyển, 12 quyển hoặc 15 quyển đều vừa đủ bó. Tính số sách đó biết rằng số sách trong khoảng từ 100 đến 150
Vì số sách xếp thành từng bó 10 quyển hoặc 15 quyển đều vừa đủ bó
nên số sách đó là BC(10; 15)
ta có BCNN(10; 15) = 30
suy ra BC(10; 15) nằm trong khoảng từ 100-150 là
{120; 150; ...)
Vậy số sách đó là 120 quyển hoặc 150 quyển.
Đơn giản thôi
gọi số sách là thứ gì cũng được
ta có
a chia hết 10
a chia hết 12
và a chia hết 15
suy ra a thuộc bội chung của 3 số trên
BCNN{10;12;15}=60
BC 10;12;15=B(60) thuộc 0;60;120;180;240; vân vân và vân vân
Mà số đó nằm trong khoảng lớn hơn 100 nhỏ hơn 150
Nên a là 120
Lê Thiện Khôi làm sai bạn thiếu 12 quyển
Một số sách nếu xếp thành từng bó 10 quyển, 12 quyển hoặc 15 quyển đều vừa đủ bó. Tính số sách đó, biết rằng số sách trong khoảng từ 100 đến 150 quyển.
gọi số sách đó là x
theo bài x chia hết cho 10;12;15
=> x thuộc BC(10;12;15)
ta có : 10 = 2.5
12=2.2.3
15= 3.5
=> BCNN(10;12;15)= 2.2.3.5=60
=> BC(10;12;15)=0;60;120;180
=> a= 0;60;120;180
mà a trong khoảng 100 -> 150
=> a= 120
tick mk nha
Một tủ sách nếu xếp thành từng bó 10 quyển, 12 quyển hoặc 15 quyển đều vừa đủ bó . Tính số sách đó biết rằng số sách trong khoảng từ 100 đến 150.
gọi số sách đó là x
theo bài x chia hết cho 10;12;15
=> x thuộc BC(10;12;15)
ta có : 10 = 2.5
12=2.2.3
15= 3.5
=> BCNN(10;12;15)= 2.2.3.5=60
=> BC(10;12;15)=0;60;120;180
=> a= 0;60;120;180
mà a trong khoảng 100 -> 150
=> a= 120
1 số sách nếu xếp thành từng bó 10 quyển ,12 quyển hoặc 15 quyển đều vừa đủ bó. Tính số sách đó biết rằng số sách trong khoảng từ 100 đến 150 ?
gọi số sách cần tìm là a ( a thuộc N ) ( bạn nhớ dùng các dấu cho phù hợp nhé )
a chia hết cho 10
a chia hết cho 12
a chia hết cho 15
Suy ra : a chia hết cho BC(10,12,15)
10 = 2.5
12 = 22 . 3
15 = 3 . 5
BCNN(10,12,15) = 22 . 3 . 5 = 60
Suy ra BC(10,12,15) thuộc B(60) = 0;60;120;180;...
Mà 100 < a < 150
Suy ra a = 120
Vậy có 120 quyển sách
k cho mình nha !