Cho tam giác ABC, M di chuyển trên cạnh BC. Kẻ MD // AC; MF // AD (B thuộc AD). Hỏi trung điểm I của DE chuyển động trên đường nào ?
Mn giúp mk với mk đang cần gấp lắm !!!
cho tam giác ABC vuông tại A.lấy M là một điểm bất kì thuộc cạnh BC. gọi MD là đường vuông góc kẻ từ M đến AB,ME là đường vuông góc kẻ từ M đến AC,O là trung điểm của DE.
Khi điểm Mdi chuyển trên cạnh BC thì điểm O di chuyển trên đường nào?
Cho tam giác ABC vuông tại A. Lấy M là1 điểm bất kỳ thuộc cạnh BC. Gọi MD là đường vuông góc kẻ từ M đến AB, ME là đường vuông góc kẻ từ M đến AC, O là trung điểm của DE
a) CM: 3 điểm A,O,M thẳng hàng
b) Khi điểm M di chuyển trên cạnh BC thì điểm O di chuyển trên đường nào?
c)Điểm M ở vị trí nào trên cạnh BC thì điểm AM có độ dài nhỏ nhất?
Bạn chỉ cần chứng minh AEDM là HCN ;O là trung điểm của DE =>O cũng là trung điểm của AM =>O,M,A thẳng hàng
b,
Gọi P ,Q lần lượt là trung điểm của AB,AC
=> giới hạn :
*Khi M trùng với B=> O trùng với P
*Khi M trùng với C=> O trùng với Q
=> I thuộc PQ
c,
Kẻ đường cao AH
Khi M trùng với H thì AM ngắn nhất (quan hệ đường vuông góc và đường xiên)
Cho tam giác ABC vuông tại A. Lấy M là một điểm bất kì thuộc cạnh BC. Gọi MD là đường vuông góc kẻ từ M đến AB, ME là đường vuông góc kẻ từ M đến AC, O là trung điểm của DE.
a) Chứng minh rằng ba điểm A, O, M thẳng hàng.
b) Khi điểm M di chuyển trên cạnh BC thì điểm O di chuyển trên đường nào?
c) Điểm M ở vị trí nào trên cạnh BC thì AM có độ dài nhỏ nhất?
a) Tứ giác ADME có:
⇒ ADME là hình chữ nhật
O là trung điiểm của đường chéo DE nên O cũng là trung điểm của đường chéo AM.
Vậy A, O, M thẳng hàng.
b) Kẻ AH ⊥ BC; OK ⊥ BC.
Ta có OA = OM, OK // AH (cùng vuông góc BC)
⇒ MK = KH
⇒ OK là đường trung bình của ΔMAH
⇒ OK = AH/2.
⇒ điểm O cách BC một khoảng cố định bằng AH/2
⇒ O nằm trên đường thẳng song song với BC.
Mặt khác khi M trùng C thì O chính là trung điểm của AC, khi M trùng B thì O chính là trung điểm của AB.
Vậy O di chuyển trên đoạn thẳng PQ là đường trung bình của tam giác ABC.
c) Vì AH là đường cao hạ từ A đến BC nên AM ≥ AH (trong tam giác vuông thì cạnh huyền là cạnh lớn nhất).
Vậy AM nhỏ nhất khi M trùng H.
Bài 7 tam giác nhọn ABC có điểm M bất kì thuộc cạnh BC. Từ M kẻ MD , ME lần lượt song song với AB, AC ( D thuộc AC , E thuộc AB ) .gọi I là trung điểm của DE .
a, chứng minh 3 điểm A,I,M thẳng hàng
b,khi M di chuyển trên cạnh BC thì I di chuyển trên đường nào ?
Cho tam giác ABC vuông tại A. Lấy M là1 điểm bất kỳ thuộc cạnh BC. Gọi MD là đường vuông góc kẻ từ M đến AB, ME là đường vuông góc kẻ từ M đến AC, O là trung điểm của DE
a) CM: 3 điểm A,O,M thẳng hàng
b) Khi điểm M di chuyển trên cạnh BC thì điểm O di chuyển trên đường nào?
c)Điểm M ở vị trí nào trên cạnh BC thì điểm AM có độ dài nhỏ nhất?
Cho tam giác ABC vuông tại A. Lấy M là một điểm bất kì thuộc cạnh BC. Gọi MD là đường vuông góc kẻ từ M đến AB, ME là đường vuông góc kẻ từ M đến AC, O là trung điểm của DE.
a) Chứng mình rằng ba điểm A, O, M thằng hàng.
b) Khi điểm M di chuyển trên cạnh BC thì điểm O di chuyển trên đường nào ?
c) Điểm M ở vị trí nào trên cạnh BC thì AM có độ dài nhỏ nhất ?
Cho tam giác ABC vuông tại A. Lấy M là một điểm bất kì thuộc cạnh BC. Gọi MD là đường vuông góc kẻ từ M đến AB, ME là đường vuông góc kẻ từ M đến AC, O là trung điểm của DE
a) Chứng minh rằng ba điểm A, O, M thẳng hàng
b) Khi điểm M di chuyển trên cạnh BC thì điểm O di chuyển trên đường nào ?
c) Điểm M ở vị trí nào trên cạnh BC thì AM có độ dài nhỏ nhất ?
Bài giải:
a) Tứ giác ADME có ˆA=ˆD=ˆE=900A^=D^=E^=900
nên ADME là hình chữ nhật
O là trung điểm của đường chéo AM.
Vậy A, O, M thẳng hàng
b)Kẻ AH ⊥ BC. Tương tự như bài 77 ta có hai cách chứng minh như sau:
Cách 1:
Kẻ OK ⊥ BC. Ta có OA = OM, OK // AH (cùng vuông góc BC).
Suy ra OK=12AHOK=12AH
Điểm O cách đoạn BC cố định một khoảng không đổi bằng 12AH12AH. Mặt khác khi M trùng C thì O chính là trung điểm của AC, khi M trùng B thì O chính là trung điểm của AB. Vậy O di chuyển trên đoạn thẳng PQ là đường trung bình của tam giác ABC.
Cách 2: Vì O là trung điểm của AM nên HO là trung tuyến ứng với cạnh huyền AM. Do đó OA = OH. Suy ra điểm O di chuyển trên đường trung trực của AH.
Mặt khác vì M di chuyển trên đoạn PQ. Vậy điểm O di chuyển trên đoạn thẳng PQ là đường trung bình của ABC.
a) Tứ giác ADME có ˆA=ˆD=ˆE=900A^=D^=E^=900
nên ADME là hình chữ nhật
O là trung điểm của đường chéo AM.
Vậy A, O, M thẳng hàng
b)Kẻ AH ⊥ BC. Tương tự như bài 77 ta có hai cách chứng minh như sau:
Cách 1:
Kẻ OK ⊥ BC. Ta có OA = OM, OK // AH (cùng vuông góc BC).
Suy ra OK=12AHOK=12AH
Điểm O cách đoạn BC cố định một khoảng không đổi bằng 12AH12AH. Mặt khác khi M trùng C thì O chính là trung điểm của AC, khi M trùng B thì O chính là trung điểm của AB. Vậy O di chuyển trên đoạn thẳng PQ là đường trung bình của tam giác ABC.
Cách 2: Vì O là trung điểm của AM nên HO là trung tuyến ứng với cạnh huyền AM. Do đó OA = OH. Suy ra điểm O di chuyển trên đường trung trực của AH.
Mặt khác vì M di chuyển trên đoạn PQ. Vậy điểm O di chuyển trên đoạn thẳng PQ là đường trung bình của ABC.
=
Bài giải:
a) Tứ giác ADME có ˆA=ˆD=ˆE=900A^=D^=E^=900
nên ADME là hình chữ nhật
O là trung điểm của đường chéo AM.
Vậy A, O, M thẳng hàng
b)Kẻ AH ⊥ BC. Tương tự như bài 77 ta có hai cách chứng minh như sau:
Cách 1:
Kẻ OK ⊥ BC. Ta có OA = OM, OK // AH (cùng vuông góc BC).
Suy ra OK=12AHOK=12AH
Điểm O cách đoạn BC cố định một khoảng không đổi bằng 12AH12AH. Mặt khác khi M trùng C thì O chính là trung điểm của AC, khi M trùng B thì O chính là trung điểm của AB. Vậy O di chuyển trên đoạn thẳng PQ là đường trung bình của tam giác ABC.
Cách 2: Vì O là trung điểm của AM nên HO là trung tuyến ứng với cạnh huyền AM. Do đó OA = OH. Suy ra điểm O di chuyển trên đường trung trực của AH.
Mặt khác vì M di chuyển trên đoạn PQ. Vậy điểm O di chuyển trên đoạn thẳng PQ là đường trung bình của ABC.
Cho tam giác ABC và một điểm M nằm trên cạnh BC. Qua M ta kẻ đường thẳng song song với cạnh AB, cắt cạnh AC tại điểm E và đường thẳng song song với cạnh AC, cắt cạnh AB tại điểm D. Khi điểm M di chuyển trên cạnh BC thì trung điểm I của đoạn thẳng DE di chuyển trên đường nào?
Chứng minh được ADME là hình bình hành Þ I là trung điểm của AM. Tương tự 2A. I thuộc đường trung bình của D ABC (đường thẳng đi qua trung điểm của AB và AC)
cho tam giác ABC , điểm M di chuyển trên cạnh AC. kẻ ME song song BC , MFsong song AB ( E thuộc AB, F thuộc BC). trung điểm O của EF chuyển động trên đường nào.
Xét tứ giác BEMF có
ME//BF
MF//BE
Do đó: BEMF là hình bình hành
Suy ra: Hai đường chéo BM và FE cắt nhau tại trung điểm của mỗi đường
hay O là trung điểm của BM