Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Lâm Thiên Hương
Xem chi tiết
ngonhuminh
9 tháng 3 2017 lúc 23:21

\(\frac{52}{9}=5+\frac{7}{9}=5+\frac{1}{1+\frac{2}{7}}=5+\frac{1}{1+\frac{1}{3+\frac{1}{2}}}=5+\frac{1}{a+\frac{1}{b+\frac{1}{c}}}\\ \)

Trần Lâm Thiên Hương
10 tháng 3 2017 lúc 7:35

ngonhuminh sao bạn biết

bạn mò ak

KHANH QUYNH MAI PHAM
Xem chi tiết
Hoàng Phúc
Xem chi tiết
Hoàng Lê Bảo Ngọc
27 tháng 5 2016 lúc 21:36

Cách 1 . \(A=\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)\)

Đặt \(\frac{a-b}{c}=x\)\(\frac{b-c}{a}=y\) ; \(\frac{c-a}{b}=z\)

Ta có : \(\frac{x+y}{z}=\frac{\frac{a-b}{c}+\frac{b-c}{a}}{\frac{c-a}{b}}=\frac{ab\left(a-b\right)+cb\left(b-c\right)}{ac\left(c-a\right)}=\frac{b\left(b-a-c\right)}{ac}=\frac{2b^2}{ac}=\frac{2b^3}{abc}\)

tương tự : \(\frac{y+z}{x}=\frac{2c^3}{abc}\)\(\frac{x+z}{y}=\frac{2a^3}{abc}\)

\(\Rightarrow A=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+1+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}+1\)

\(=3+\frac{x+z}{y}+\frac{x+y}{z}+\frac{y+z}{x}=3+\frac{2}{abc}\left(a^3+b^3+c^3\right)\)

Áp dụng bài toán phụ : Nếu a + b + c = 0 thì \(a^3+b^3+c^3=3abc\) (có thể chứng minh bằng cách rút a = - b - c  rồi thay vào tổng ba lập phương) được : 

\(A=3+\frac{2}{abc}.3abc=3+6=9\)

Lê Chí Cường
27 tháng 5 2016 lúc 21:42

Đặt \(\frac{a-b}{c}=x=>\frac{c}{a-b}=\frac{1}{x}\)

\(\frac{b-c}{a}=y=>\frac{a}{b-c}=y\)

\(\frac{c-a}{b}=z=>\frac{b}{c-a}=\frac{1}{z}\)

=>\(A=\left(x+y+z\right).\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

=>\(A=x.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+y.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+z.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

=>\(A=1+\frac{x}{y}+\frac{x}{z}+1+\frac{y}{x}+\frac{y}{z}+1+\frac{z}{x}+\frac{z}{y}\)

=>\(A=3+\left(\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}\right)\)

=>\(A=3+\frac{x+z}{y}+\frac{x+y}{z}+\frac{y+z}{x}\)

Lại có: \(\frac{x+z}{y}=\frac{\frac{a-b}{c}+\frac{c-a}{b}}{\frac{b-c}{a}}=\frac{\frac{ab-b^2}{bc}+\frac{c^2-ac}{bc}}{\frac{b-c}{a}}=\frac{\frac{ab-b^2+c^2-ac}{bc}}{\frac{b-c}{a}}\)

\(=\frac{\frac{\left(ab-ac\right)-\left(b^2-c^2\right)}{bc}}{\frac{b-c}{a}}=\frac{\frac{a.\left(b-c\right)-\left(b+c\right).\left(b-c\right)}{bc}}{\frac{b-c}{a}}=\frac{\frac{\left(a-b-c\right).\left(b-c\right)}{bc}}{\frac{b-c}{a}}\)

\(=\frac{\left(a-b-c\right).\left(b-c\right).a}{\left(b-c\right).bc}=\frac{\left(a-b-c\right).a}{bc}=\frac{\left(a+a-a-b-c\right).a}{bc}\)

\(=\frac{\left[2a-\left(a+b+c\right)\right].a}{bc}\)

Vì a+b+c=0

=>\(\frac{x+z}{y}=\frac{\left(2a-0\right).a}{bc}=\frac{2a^2}{bc}=\frac{2a^3}{abc}\)

Chứng minh tương tự, ta có:

\(\frac{x+y}{z}=\frac{2b^3}{abc}\)

\(\frac{y+z}{x}=\frac{2c^3}{abc}\)

=>\(A=3+\frac{x+z}{y}+\frac{x+y}{z}+\frac{y+z}{x}=3+\frac{3a^3}{abc}+\frac{3b^3}{abc}+\frac{3c^3}{abc}\)

=>\(A=3+\frac{2a^3+2b^3+2c^3}{abc}\)

=>\(A=3+\frac{2.\left(a^3+b^3+c^3\right)}{abc}\)

Vì a+b+c=0

=>a=-(b+c)

=>\(a^3=\left[-\left(b+c\right)\right]^3\)

=>\(a^3=-\left(b+c\right)^3\)

=>\(a^3=-\left[b^3+3bc.\left(b+c\right)+c^3\right]\)

=>\(a^3=-b^3-3bc.\left(b+c\right)-c^3\)

=>\(a^3+b^3+c^3=-3bc.\left(b+c\right)\)

Vì a+b+c=0=>b+c=-a

=>\(a^3+b^3+c^3=-3bc.\left(-a\right)\)

=>\(a^3+b^3+c^3=3abc\)

Thay vào A, ta có:

\(A=3+\frac{2.\left(a^3+b^3+c^3\right)}{abc}=3+\frac{2.3abc}{abc}=3+\frac{6.abc}{abc}=3+6=9\)

=>A=9

Vậy A=9

Hoàng Lê Bảo Ngọc
27 tháng 5 2016 lúc 21:49

Cách 2. Đặt \(P=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\) ; \(Q=\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\)

\(\Rightarrow P=\frac{ab\left(a-b\right)+bc\left(b-c\right)+ac\left(c-a\right)}{abc}\)

Xét riêng : \(ab\left(a-b\right)+bc\left(b-c\right)+ac\left(c-a\right)=ab\left[-\left(b-c\right)-\left(c-a\right)\right]+bc\left(b-c\right)+ac\left(c-a\right)\)

\(=\left[-ab\left(b-c\right)+bc\left(b-c\right)\right]+\left[-ab\left(c-a\right)+ac\left(c-a\right)\right]\)

\(=b.\left(c-a\right).\left(b-c\right)+a\left(c-a\right)\left(c-b\right)=\left(c-a\right)\left(b-c\right)\left(b-a\right)\)

Vậy : \(P=\frac{\left(c-a\right)\left(b-c\right)\left(b-a\right)}{abc}\)

Tiếp theo, rút gọn Q như sau : 

Đặt \(x=b-c\)\(y=c-a\)\(z=a-b\)

Ta có : \(x-y=a+b-2c=-c-2c=-3c\)

\(y-z=b+c-2a=-a-2a=-3a\)

\(z-x=c+a-2b=-b-2b=-3b\)

\(\Rightarrow3Q=\frac{-\left(y-z\right)}{x}+\frac{-\left(z-x\right)}{y}+\frac{-\left(x-y\right)}{z}\)\(\Rightarrow-3Q=\frac{y-z}{x}+\frac{z-x}{y}+\frac{x-y}{z}\)

Rút gọn tương tự như P, ta được : \(-3Q=\frac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{xyz}=\frac{\left(-3c\right).\left(-3a\right).\left(3b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(\Rightarrow Q=-\frac{9abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

Vậy : \(A=PQ=\frac{\left(c-a\right)\left(c-b\right)\left(a-b\right)}{abc}.\frac{-9abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)\(\Rightarrow A=9\)

Trần Thu Phương
Xem chi tiết
Trần Thùy Dương
10 tháng 10 2018 lúc 23:03

Gọi \(M=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\)      ta có :

\(M\frac{c}{a-b}=1+\frac{c}{a-b}\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\)

\(=1+\frac{c}{a-b}.\frac{b^2-bc+ac-a^2}{ab}\)

\(=1+\frac{c}{a-b}.\frac{\left(a-b\right)\left(c-a-b\right)}{ab}\)

\(=1+\frac{2c^2}{ab}=1+\frac{2c^3}{abc}\)

Tương tự  \(M.\frac{a}{b-c}=1+\frac{2a^3}{abc}\)

và  \(M.\frac{b}{c-a}=1+\frac{2b^3}{abc}\)

Vậy \(A=3+\frac{2\left(a^3+b^3+c^3\right)}{abc}=9\)

( Vì \(a^3+b^3+c^3=3abc\).  Lại do  . ( Phân tích là ra hết ).\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

=> ....

lê duy mạnh
6 tháng 10 2019 lúc 20:00

bài này trong sách nâng cao phát triển tập 1 

Đoàn Phong
Xem chi tiết
Võ Đông Anh Tuấn
2 tháng 12 2016 lúc 10:38

Gọi \(M=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b},\)ta có :

\(M.\frac{c}{a-b}=1+\frac{c}{a-b}\left(\frac{b-c}{a}+\frac{c-a}{b}\right)=1+\frac{c}{a-b}.\frac{b^2-bc+ac-a^2}{ab}\)

\(=1+\frac{c}{a-b}.\frac{\left(a-b\right)\left(c-a-b\right)}{ab}=1+\frac{2c^2}{ab}=1+\frac{2c^3}{abc}\)

Tương tự : \(M.\frac{a}{b-c}=1+\frac{2a^3}{abc},M.\frac{b}{c-a}=1+\frac{2b^3}{abc}.\)

Vậy \(A=3+\frac{2\left(a^3+b^3+c^3\right)}{abc}=9\)

Trần Ronaldo
Xem chi tiết
Thanh Tùng DZ
15 tháng 12 2017 lúc 20:45

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\frac{a}{b}=1\Rightarrow a=b;\frac{b}{c}=1\Rightarrow b=c\)

Từ đó suy ra : a = b = c

\(\Rightarrow\frac{a^{72}.b^{73}.c^{74}}{b^{219}}=\frac{b^{219}}{b^{219}}=1\)

Nguyễn Anh Quân
15 tháng 12 2017 lúc 20:48

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

a/b=b/c=c/a=a+b+c/a+b+c = 1

=> a=b;b=c;c=a => a=b=c

Khi đó : a^72.b^73.c^74/b^219 = b^72.b^73.b^74/b^219 = b^219/b^219 = 1

k mk nha

Long
Xem chi tiết
Phạm minh thu
14 tháng 12 2016 lúc 16:54

đề bài sai rồi

Ta cóA=a3+a2-b3+b2+ab-3ab(a-b+1)

=(a3-b3)+(a2+ab+b2)-24ab(do a-b=7)

=(a-b)(a2+ab+b2)+(a2+ab+b2)-24ab

=(a2+ab+b2)(a-b+1)-24ab

mà a-b=7=>A=8a2+8ab+8b2-24ab

=8a2-16ab+8b2

=8(a-b)2=8 . 72=8 . 49=392

Dinh Viet Tien
Xem chi tiết

Áp dụng tính chất dãy tỉ số bằng nhau, ta có

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\Leftrightarrow a^3=c^3=b^3\)

Ta có : \(a^3=b^3=c^3=abc\) 

\(\frac{a^3}{abc}=\frac{abc}{abc}=1\Leftrightarrow\frac{a^3+b^3+c^3}{3abc}=\frac{3abc}{3abc}=1\)

Vậy \(P=1\)

Khách vãng lai đã xóa
Member lỗi thời :>>...
Xem chi tiết
ミ★Zero ❄ ( Hoàng Nhật )
15 tháng 3 2022 lúc 19:06

Sửa đề \(D=\frac{a^3+3^3}{b^3+4^3}\)biết \(\frac{a+3}{a-3}=\frac{b+4}{b-4}\)

\(\Leftrightarrow\left(a+3\right)\left(b-4\right)=\left(a-3\right)\left(b+4\right)\)

\(\Leftrightarrow ab-4a+3b-12=ab+4a-3b-12\)

\(\Leftrightarrow8a=6b\)

\(\Leftrightarrow\frac{a}{6}=\frac{b}{8}\Leftrightarrow\frac{a}{3}=\frac{b}{4}\)

Đặt \(\frac{a}{3}=\frac{b}{4}=k\)\(\Rightarrow a=3k,b=4k\)

\(\Rightarrow D=\frac{a^3+3^3}{b^3+4^3}=\frac{\left(3k\right)^3+3^3}{\left(4k\right)^3+4^3}\)

\(=\frac{3^3\left(k^3+1\right)}{4^3\left(k^3+1\right)}=\frac{3^3}{4^3}=\frac{27}{64}\)

Khách vãng lai đã xóa
Phan Tuấn Anh
15 tháng 3 2022 lúc 11:50

TL: 
8 nhé 

HNJK

Khách vãng lai đã xóa
Cô nhóc cung Thần Nông
Xem chi tiết
Minh Hiền
10 tháng 7 2016 lúc 8:33

Theo t/c dãy tỉ số bằng nhau:

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\)

=> \(2a=b+c\)

=> \(2b=c+a\)

=> \(2c=a+b\)

Do đó:

\(A=2a+2b+2c=b+c+c+a+a+b=2.\left(a+b+c\right)\)