Tìm x và y biết rằng
\(\left(3x-5\right)^{100}+\left(2y+1\right)^{200}\) lớn hơn hoặc bằng0
Tìm x,y biết
\(\left(3x-5\right)^{100}+\left(2y+1\right)^{200}\le0\)
\(\left(3x-5\right)^{100}\ge0;\left(2y+1\right)^{200}\ge0\)
\(\Rightarrow\left(3x-5\right)^{10}+\left(2y+1\right)^{200}\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}3x-5=0\\2y+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{1}{2}\end{cases}}\)
Tìm x,y biết
\(\left(3x-5\right)^{100}+\left(2y+3\right)^{200}\le0\)
\(\hept{\begin{cases}\left(3x-5\right)^{100}\ge0\\\left(2y+3\right)^{200}\ge0\end{cases}}\)\(\Rightarrow\left(3x-5\right)^{100}+\left(2y+3\right)^{200}\ge0\)
Kết hợp với giả thiết:\(\hept{\begin{cases}\left(3x-5\right)^{100}=0\\\left(2y+3\right)^{200}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3x-5=0\\2y+3=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3x=5\\2y=-3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{3}{2}\end{cases}}\)
Các bn giải giúp mk bài này vs nhé:
\(\left(3x-5\right)^{100}+\left(2y+1\right)^{200}\) nhỏ hơn hoặc bằng 0
Tìm x, y biết
a, \(\left(x+1\right)^2+\left(y-5\right)^2=0\)
b, \(\left(3x-5\right)^{100}+\left(2y+1\right)^{200}=0\)
a) x+1=y-5=0
=>x=-1, y=5
b)3x-5=2y+1=0
=>x=5/3, y=-1/2
ý quên, (y-5)^2 chuyển thành (y-5)^4
Tìm x,y
a) \(\left(x-5\right)^2=\left(1-3x\right)^2\)
b)\(\left(3x-1\right)^{100}+\left(2y+1\right)^{200}\le0\)
Tìm n
\(\frac{1}{3}.3^n+5.3^{n-1}=162\)
\(\frac{1}{3}.3^n+5.3^{n-1}=162\)
<=> \(3^{n-1}+5.3^{n-1}=162\)
<=> \(3^{n-1}\left(1+5\right)=162\)
<=> \(3^{n-1}.6=162\)
<=> \(3^{n-1}=162:6\)
<=> \(3^{n-1}=27\)
<=> \(3^{n-1}=3^3\)
<=> n - 1 = 3
<=> n = 3 + 1 = 4
Câu 1
a) Từ gt=>\(\hept{\begin{cases}x-5=1-3x\\x-5=3x-1\end{cases}}\)
<=>\(\hept{\begin{cases}4x=6\\2x=-4\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{3}{2}\\x=-2\end{cases}}\)
b) Ta có: \(\hept{\begin{cases}\left(3x-1\right)^{100}\ge0,\forall x\in R\\\left(2y+1\right)^{200}\ge0,\forall x\in R\end{cases}}\)
Kết hợp với đề bài => \(\hept{\begin{cases}3x-1=0\\2y+1=0\end{cases}}\)
=>\(\hept{\begin{cases}x=\frac{1}{3}\\y=-\frac{1}{2}\end{cases}}\)
Bài 2
\(\frac{1}{3}.3^n+5.3^{n-1}=162\)
<=>\(3^{n-1}+5.3^{n-1}=162\)
<=>\(6.3^{n-1}=162\)
<=>\(3^{n-1}=27=3^3\)
<=>\(n-1=3\)
<=>\(n=4\)
b, Dấu = khi \(\hept{\begin{cases}x=\frac{1}{3}\\y=-\frac{1}{2}\end{cases}}\)
\(pt< =>6.3^{n-1}=162< =>3^{n-1}=3^3< =>n=4\)
Tìm các số thực x và y, biết :
a) \(\left(3x-2\right)+\left(2y+1\right)i=\left(x+1\right)-\left(y-5\right)i\)
b) \(\left(1-2x\right)-i\sqrt{3}=\sqrt{5}+\left(1-3y\right)i\)
c) \(\left(2x+y\right)+\left(2y-x\right)i=\left(x-2y+3\right)+\left(y+2x+1\right)i\)
Từ định nghĩa bằng nhau của hai số phức, ta có:
a) ⇔ ;
b) ⇔ ;
c) ⇔ ⇔ .
Tìm x,y,z ,biết:
\(a,5^{3x+1}=25^{x+2}\)
\(b,\left(3x-1\right)^{200}=\left(1-3x\right)^{197}\)
\(c,\left(x-\frac{1}{2}\right)^{100}+\left(y-4\right)^{102}\)
\(đ,\left(\frac{1}{2}x+1\right)^2+\left(\frac{2}{3}y-1\right)^2+|x-y-z|\le0\)
Tìm a,b,c, biết\(ab=2,bc=3,ca=54\)
a) \(5^{3x+1}=25^{x+2}\)
\(\Leftrightarrow5^{3x+1}=\left(5^2\right)^{x+2}\)
\(\Leftrightarrow5^{3x+1}=5^{2x+4}\)
\(\Leftrightarrow3x+1=2x+4\)
\(\Leftrightarrow3x-2x=4-1\)
\(\Leftrightarrow x=3\)
b) \(\left(3x-1\right)^{200}=\left(1-3x\right)^{197}\)
\(\Leftrightarrow\left(1-3x\right)^{200}=\left(1-3x\right)^{197}\)
\(\Leftrightarrow\left(1-3x\right)^{200}-\left(1-3x\right)^{197}=0\)
\(\Leftrightarrow\left(1-3x\right)^{197}\left[\left(1-3x\right)^3-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=0\end{cases}}\)
Cho x,y là các số thực lớn hơn 1. Chứng minh rằng:
\(\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\) lớn hơn hoặc bằng 8
tính giả trị nhỏ nhất, lớn nhất của biểu thức
a. \(-\left(3-x\right)^{100}\)-3\(\left(y+2\right)^{200}\)+2023
b. \(\left(x^2+3\right)^2\)+125
c. -\(\left(x-20\right)^{200}\)-2\(\left(y+5\right)^{100}\)+2022
a) -(3 - x)¹⁰⁰ - 3(y + 2)²⁰⁰ + 2003
Ta có:
(3 - x)¹⁰⁰ ≥ 0
⇒ -(3 - x)¹⁰⁰ ≤ 0
(y + 2)²⁰⁰ ≥ 0
⇒ -3(y + 2)²⁰⁰ ≤ 0
⇒ -(3 - x)¹⁰⁰ - 3(y + 2)²⁰⁰ ≤ 0
⇒ -(3 - x)¹⁰⁰ - 3(y + 2)²⁰⁰ + 2023 ≤ 2023
Vậy giá trị lớn nhất của biểu thức đã cho là 2023 khi x = 3 và y = -2
b) (x² + 3)² + 125
= x⁴ + 6x² + 9 + 125
= x⁴ + 6x² + 134
Ta có:
x⁴ ≥ 0
x² ≥ 0
⇒ 6x² ≥ 0
⇒ x⁴ + 6x² ≥ 0
⇒ x⁴ + 6x² + 134 ≥ 134
⇒ (x² + 3)² + 125 ≥ 134
Vậy giá trị nhỏ nhất của biểu thức đã cho là 134
c) -(x - 20)²⁰⁰ - 2(y + 5)¹⁰⁰ + 2022
Ta có:
(x - 20)²⁰⁰ ≥ 0
⇒ -(x - 20)²⁰⁰ ≤ 0
(y + 5)¹⁰⁰ ≥ 0
⇒ -2(y + 5)¹⁰⁰ ≤ 0
⇒ -(x - 20)²⁰⁰ - 2(y + 5)¹⁰⁰ ≤ 0
⇒ -(x - 20)²⁰⁰ - 2(y + 5)¹⁰⁰ + 2022 ≤ 2022
Vậy giá trị lớn nhất của biểu thức đã cho là 2022 khi x = 20 và y = -5