Từ định nghĩa bằng nhau của hai số phức, ta có:
a) ⇔ ;
b) ⇔ ;
c) ⇔ ⇔ .
Từ định nghĩa bằng nhau của hai số phức, ta có:
a) ⇔ ;
b) ⇔ ;
c) ⇔ ⇔ .
Tìm các số thực \(x,y\) thỏa mãn :
a) \(2x+1+\left(1-2y\right)i=2-x+\left(3y-2\right)i\)
b) \(4x+3+\left(3y-2\right)i=y+1+\left(x-3\right)i\)
c) \(x+2y+\left(2x-y\right)i=2x+y+\left(x+2y\right)i\)
1/ I=\(\int\limits^1_0\)\(\frac{dx}{\sqrt{3+2x-x^2}}\)
2/J=\(\int\limits^1_0\)\(xln\left(2x+1\right)dx\)
3/K=\(\int\limits^3_2ln\left(x^3-3x+2\right)dx\)
4/I=\(\int\limits^{\frac{\pi}{6}}_0\)\(\frac{tan^4xdx}{cos2x}\)
5/J=\(\int\limits^3_1\)\(\frac{3+lnx}{\left(x+1\right)^2}dx\)
6/K=\(\int\limits^1_0\)\(\frac{\left(2+xe^x\right)}{x^2+2x+1}dx\)
câu 1:Trong không gian hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I (3;2;-1) và đi qua điểm A (2;1;2). mặt phẳng nào tiếp xúc với S tại A??
A. X+Y-3Z=0 B. X-Y-3Z+3=0 C. X+Y+3Z -9 =0 D. X+Y-3Z+3=0
Câu 2: Trong không gian hệ tọa độ Oxyz, cho đường thẳng d có phương trình \(\dfrac{X-1}{2}\)=\(\dfrac{Y+5}{-1}\)=\(\dfrac{Z-3}{4}\). phương trình nào dưới đây là phương trình hình chiếu vuông góc của d lên mặt phẳng X+3=0??
A. \(\left\{{}\begin{matrix}X=-3\\Y=-5-t\\Z=-3+4t\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}X=-3\\Y=-5+t\\Z=3+4t\end{matrix}\right.\) C.\(\left\{{}\begin{matrix}X=-3\\Y=-5+2t\\Z=3-t\end{matrix}\right.\) D. \(\left\{{}\begin{matrix}X=-3\\Y=-6-t\\Z=7+4t\end{matrix}\right.\)
Câu 3:Trong không gian hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình của đường thẳng đi qua điểm A (2;3;0) và vuông góc với mặt phẳng (P): X+3Y-Z+5=0?
A.\(\left\{{}\begin{matrix}X=1+3t\\Y=3t\\Z=1-t\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}X=1+t\\Y=3t\\Z=1-t\end{matrix}\right.\) C.\(\left\{{}\begin{matrix}X=1+t\\Y=1+3t\\Z=1+t\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}X=1+3t\\Y=3t\\Z=1+t\end{matrix}\right.\)
cho số phức z thỏa mãn \(\left|z^2-2z+5\right|\)=\(\left|\left(z-1+2i\right)\left(z+3i-1\right)\right|\)
tìm min \(\left|w\right|\) với w=z-2-2i
cho số phức z= a+bi ( a, b thuộc R ) thỏa mãn z+1+2i - (1+i) \(\left|z\right|\)=0 và \(\left|z\right|>1\) tính giá trị P = a+b
Trên mặt phẳng tọa độ, tìm tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện :
a) \(\left|z\right|=1\)
b) \(\left|z\right|\le1\)
c) \(1< \left|z\right|\le2\)
d) \(\left|z\right|=1\) và phần ảo của z bằng 1
Cho số phức z.Tìm giá trị nhỏ nhất và lớn nhất của \(\left|z\right|\).Biết \(\left|z^2+1\right|=4\left|z\right|\)
Tính \(\left|z\right|\) với :
a) \(z=-2+i\sqrt{3}\)
b) \(z=\sqrt{2}-3i\)
c) \(z=-5\)
d) \(z=i\sqrt{3}\)
Có thể nói gì về các điểm biểu diễn hai số phức \(z_1\) và \(z_2\), biết :
a) \(\left|z_1\right|=\left|z_2\right|\)
b) \(z_1=\overline{z_2}\)