Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngoc An Pham
Xem chi tiết
~ Kammin Meau ~
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Huy
Xem chi tiết
Huy
20 tháng 12 2020 lúc 7:54

làm nhanh giùm mình nha ! đang cần gấp <:)

Khách vãng lai đã xóa
Thanh Trúc
Xem chi tiết
Đinh Thùy Linh
25 tháng 6 2016 lúc 23:46

Sửa lại đề là x;y;z khác -1.

\(A=\frac{xy+2x+1}{xy+x+y+1}+\frac{yz+2y+1}{yz+y+z+1}+\frac{zx+2z+1}{zx+z+x+1}=\)

\(A=\frac{x\left(y+1\right)+x+1}{x\left(y+1\right)+y+1}+\frac{y\left(z+1\right)+y+1}{y\left(z+1\right)+z+1}+\frac{z\left(x+1\right)+z+1}{z\left(x+1\right)+x+1}=\)

\(A=\frac{x\left(y+1\right)+x+1}{\left(x+1\right)\left(y+1\right)}+\frac{y\left(z+1\right)+y+1}{\left(y+1\right)\left(z+1\right)}+\frac{z\left(x+1\right)+z+1}{\left(z+1\right)\left(x+1\right)}=\)vì x;y;z khác -1 nên:

\(A=\frac{x}{x+1}+\frac{1}{y+1}+\frac{y}{y+1}+\frac{1}{z+1}+\frac{z}{z+1}+\frac{1}{x+1}=\)

\(A=\frac{x}{x+1}+\frac{1}{x+1}+\frac{y}{y+1}+\frac{1}{y+1}+\frac{z}{z+1}+\frac{1}{z+1}=\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}=1+1+1=3\)

A = 3 với mọi x;y;z khác -1 nên A không phụ thuộc vào x;y;z. đpcm

....
Xem chi tiết
Lấp La Lấp Lánh
24 tháng 8 2021 lúc 8:39

a)\(A=3x^2+6xy+3y^2-3z^2=3\left(x^2+2xy+y^2-z^2\right)=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y-z\right)\left(x+y+z\right)\)b) \(A=\left(x+y\right)^2-2\left(x+y\right)+1=\left(x+y-1\right)^2\)

c) \(A=x^2+y^2+2xy+yz+zx=\left(x+y\right)^2+z\left(x+y\right)=\left(x+y\right)\left(x+y+z\right)\)

Huỳnh Thúy Anh
Xem chi tiết
Lê Lý Nguyên
30 tháng 10 2017 lúc 5:10

bạn xem lại nhé, chứ hình như là sai rồi!

Tư Linh
Xem chi tiết
naruto
Xem chi tiết